如图在△ABC中,ab=10,ac=15,点D,E分别在AB,AC 上

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 14:53:29
如图在△ABC中,ab=10,ac=15,点D,E分别在AB,AC 上
已知如图,在△ABC和△DEF中,AB=DE,

证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)

已知,如图,在△ABC中,AB

∵AC=8,C△ABE=14,    ∴AB+AE+BE=14    ∵DE垂直平分BC  &nbs

如图,在等腰△ABC中,AB=AC=10,BC=12,求sinB,cosB的值

过点A作BC的垂线交BC于点D,因为AB=AC,AD垂直于BC所以AD为BC的垂直平分线所以BD=1/2BC=6所以AD=8所以sinB=AD/AB=8/10=4/5cosB=BD/AB=6/10=3

如图,在△ABC中,AB=AC,AD平分∠BAC.

证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中AB=AC∠BAD=∠CADAD=AD,∴△ABD≌△ACD.

如图,在等腰三角形ABC 中,AB=AC,

腰长:10底:1还不知道,百度HiM我

如图,在Rt△ABC中,∠c=90°,已知AB+BC=10cm

应该时AC+BC=10吧AB^2=AC^2+BC^2=(AC+BC)^2-2AC*BC=100-2AC*BC因为AC+BC≥2√(AC*BC)所以AC*BC≤25,即AB^2≥100-50=50当AC

如图在等腰三角形abc中AB=AC

∵AB=ACAD=BD∴∠B=∠C=∠BAD∵△ADE是等边三角形∴∠DAC=60°∵∠B+∠BAD+∠DAC+∠C=180°∴3∠C+60°=180°∠C=40°∵∠DEC=180°-60°=120

如图,在三角形ABC中AB=AC

解1:因AB是员直径,所以角ADB=90,即AD垂直于BC.因AB=AC,且AD垂直BC,AO=DO,所以角CAD=角BAD=角ADO.因AC垂直EF,因此角CAD+角ADE=角AED=90又因CAD

如图,在△ABC中,AD⊥BC,AB+BD=AC+CD.问△ABC是什么三角形?

有题意,有AB^2-BD^2=AC^2-CD^2有(AB+BD)(AB-BD)=(AC+CD)(AC-CD)而AB+BD=AC+CD,有AB-BD=AC-CD将上面两个式子相加有AB=AC,既是等腰三

如图,在△ABC中,AB=7,AC=4,AD是△ABC的一条

解题思路:运用三角形全等解答。解题过程:有疑问讨论。最终答案:略

如图△ABC中 AB=BC BE

∵AD⊥BC,∠BAD=45°,∴⊿ADB是等腰直角三角形,AD=BD;∵AB=BC,BE⊥AC,∴AE=EC,AC=2AE,∵Rt⊿EBC与Rt⊿DAC有公用锐角∠C,∴∠EBC=∠DAC,可证Rt

如图.在△ABC中,AB=AC,

10°设∠B度数为X,AB=AC.∠C也为X∠DAE=180-2X-20因为AD=AE,∠AED=(180-∠DAE)/2=X+10∠AED是三角形ECD的外角,∠AED=∠CDE+∠C即∠CDE+X

已知:如图,在△ABC中,AB=AC=9,BC=6.

(1)作AE⊥BC交BC于点E,∵AB=AC,∴BE=EC=3,在Rt△AEC中,AE=92−32=62,∴Sin∠C=AEAC=629=223;(2)在Rt△BDC中,Sin∠C=BDBC,即BD6

如图,在三角形ABC中,AB=AC,

因为AB=AC,角A=36度所以角ABC=角ACB=72度因为CD平分角ACB所以角BCD=角DCA=36度因为角A=36度所以角BCD=角A因为角DBC=角ABC所以三角形CDB相似于三角形ABC所

如图,在△ABC中,AB=AC=13,BC=10,求△ABC的面积

过点A作AD⊥BC于D∵AB=AC=13,AD⊥BC∴BD=CD=BC/2=5∴AD=√(AB²-BD²)=√(169-25)=12∴S△ABC=BC×AD/2=10×12/2=6

如图,在△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径

解答提示:如图,设外接圆圆心为O,连接AO并延长交BC于D,连接OB因为三角形ABC是等腰三角形所以AD⊥BC,BD=CD=6根据勾股定理得AD=8设OA=OB=R,则OD=8-R由勾股定理得:BD^

如图,在Rt△ABC中,∠B=90°,BC>AB.

(1)如图;(2)BD=DE;理由:过P作PF⊥BD于F,则四边形DFPE为矩形,PF=DE,∵∠ABD+∠DBC=90°,∠A+∠ABD=90°,∴∠A=∠DBC.在△ABD和△BPF中,∠ADB=

如图:在三角形ABC中,AB

倍长AD到E,AD=DE连接CE三角形CDE全等于三角形BDA(根据边角边定理来证明这个结论)对应边相等,对应角相等,则CE=AB,角DEC=角DAB三角形ACE中CE=AB所以角DAC所以角DAC