如图在RT三角形ADC中角ACB=90°点D E 分别是AB AC中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 03:51:06
应该是角ADE等于角C角A是公共的,得到三角形ADE和ACB相似得到二个角相等.或者三角形共180度,有二个角相等,剩下的必然相等
可以证明,△ACD是等腰直角三角形,AC=CD=4△ABC中,BC=AC÷tan30°=4√3所以,BD=BC-CD=4(√3-1)再问:详细点,要交到老师那去再答:△ABC是直角三角形,∠C=90°
再答:����再答:����Ŷ
如图所示,因为角平分线到角两边的距离相等,即DE=DF,SADC=1/2*AC•DE;SABD=1/2*AB•FD;所以:SABD:SADC=AB:AC.
∵∠C=90°,∠ADC=60°∴DC=1/2AD又∵AC=√3∴DC=1,AD=2又∵DB=2AD∴DB=4∴BC=DB+DC=5∴AB=2√7∴C△ABC=5+2√7+√3再问:为什么DC=1,老
∠ABC=∠ADC=Rt角=90且E是对角线AC的中点在直角三角形中斜边上的中线等于斜边的一半所以BE=DE=1/2AC
因为AB=2AC,D为AB边上中点所以,AD=AC因为在Rt三角形ABC中,COS角CAB=AC\AB=1\2所以角A=60度因为AD=AC所以三角形ADC为等边三角形再问:cos是什么意思再答:你们
我可要好评分哟
∵ACB=90,且D为AB的中点∴AD=DB=DC(直角三角形斜边中线等于斜边的一半)由翻折可知:AD=AE,CD=EC∴AE=AD=DC=CE∴四边形ABCE为菱形∴EC∥AB
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
以AC为X轴,以A为原点建立直角坐标系,则A(0,0)、B(6,6)、C(6,0),直线AB的解析式为y=x,设P点坐标为(x,x),过P点作PD垂直BC于D,作PE垂直AC于E,依题意AP=√2t,
MN与BD的位置关系:MN垂直平分BD理由连DN,BN在直角△ABC中,DN=AC/2(直角三角形斜边上的中线等于斜边的一半),同理:BN=AC/2,∴DN=BN,又M是BD的中点,∴MN垂直平分BD
第一个应该是求证:△ABE≌△ACD1、证明∵∠BAD=∠CAE=90∴∠CAD=∠CAB+∠BAD=∠CAB+90,∠BAE=∠CAB+∠CAE=∠CAB+90∴∠CAD=∠BAE∵AB=AD,AC
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
MN与BD垂直连接MD和MB,因为角ABC=ADC=RT=90°所以三角形ABC,三角形ADC是直角三角形而M是AC的中点,N是BD的中点,根据直角三角形的斜边中点到直角顶点的连线是斜边的一半可以得到
解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件
因为tanB=1/2=AC/BC,BC=8所以AC=4,设AD=x,则BD=x,CD=BC-BD=8-x直角三角形ACD中,由勾股定理,得,AC²+CD²=AD&a
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的
解题思路:请把图发过来解题过程:请把图发过来最终答案:略