如图圆O的直径FD⊥弦AB于点H,E是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:40:09
∵AD//OC∴∠DAO=∠COB∠ADO=∠DOC∵OA=OD∴∠DAO=∠ADO∴∠COB=∠DOC∴弧DE=弧BE(同圆或等圆中,圆心角相等所对的弧也相等)∴点E为弧BD的中点
因为AF=3GF=2所以AG=√5tan∠ADG=AG/GD=√5/4又因为∠ADG=∠E所以tan∠E=√5/4
应是证明AE=BF因,EC⊥CD,FD⊥CD,所以,EC//FD,过O作垂直CD的半径交CD于M,则OM//EC//FD,DM=DM,(垂直弦的径平分弦),所以,EO=FO,又因AO=BO,AO-EO
希望你看得懂,按说明画一下比较好了解MC⊥AB⊥ND>>MC平行ND延伸MC交圆O於E>>ME平行ND从E做直径EF,则角NME=角MEF因为OME为等腰三角延伸ND交圆O於F’,则角NME=角MNF
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
1连接DB,DO.∵AB为直径,∴∠ADB=90∴AD⊥BD∵AD‖OC∴OC⊥BD又∵OD=OB∴OC为等腰△ODB的BD边垂直平分线∴∠COB=∠COD∴E 为弧DB的中点2、在△COB
AD=6,AB=10,三角形ADB为直角三角形,角D为直角故,BD=8AB*Dc=AD*BD,AD=6,AB=10,BD=8故Dc=4.8DF=2Dc故DF=9.6
在圆O中,AB是圆O的直径,CD是弦,点E,F在BC上,EC⊥CD,FD⊥CD,求证:AE=BF证明:过O作OG⊥CD,交CD于G.因为O是圆心,故G点平分CD,即CG=GD.因为EC⊥CD,FD⊥C
(1)∵直径AB⊥弦CD,∴AB平分弦CD,即CE=12CD=3.在Rt△OCE中,由勾股定理,得OE=OC2−CE2=52−32=4;(2)②,证明:连接OP(如图1),∵OC=OP,∴∠2=∠3,
(1)证明:∵AB是⊙O的直径,CD⊥AB,∴AC=AD,∴AC=AD,∴∠ACE=∠AFC;(2)连接OC,设圆的半径为r,∵CD=BE=8,∴CE=4,OE=8-r,∴在直角三角形OCE中,r2-
连接DB,则∠ADB=90°(直径所对的圆周角为直角)因为弦DF⊥AB于点G,可证直角△ADB和直角△DGB全等所以:DB:AB=DG:AD=4:5因为:圆O的半径为5,所以AB=10即:DB=8由勾
1,因为cd垂直于ab,be平行于cd,所以be垂直于ab,又因为ab为直径,所以,be为切线.2,cd=6,所以cm=3,因为,tanbcd=0.5,所以bm=1.5,因为ab为直径,c为圆上一点,
(1)证明:∵AB为⊙O的直径,∴∠ACB=90°(1分)∵CD⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB(2分)又∵∠A=∠D,∴△ACB∽△DEB.(3分)(2)连接OC,则OC=OA,(4
∵OE⊥BC∴E为BC中点∴BE=CE=4设半径为r则OD=rOE=OD-ED=r-2在三角形OBE中有OB²=BE²+OE²即r²=4²+(r-2)
证明:连接OD,如右图所示,∵AC=BC,∴∠A=∠ABC,∵OD=OB,∴∠OBD=∠ODB,∴∠ODB=∠A,∴OD∥AC,又∵DF⊥AC,∴∠CFD=90°,∴∠ODE=90°,∴OD⊥EF,∴
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
过O点作OM⊥CD,交CD于M,所以M为CD的中点.又因为EC⊥CD,DF⊥CD,所以EC‖OM‖DF综上所述,M为CD中点,EC‖OM‖DF,得出EO=OF,又因为OA=OB,AE=OA-EO,BF
这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定
连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC
方法一: ∠CFD = ∠COA = ∠DOA =固定值=> ∠PFE = ∠DOE&nbs