如图圆O沿直线l滚动已知圆O的半径是0.4mAB是圆O

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 16:49:17
如图圆O沿直线l滚动已知圆O的半径是0.4mAB是圆O
已知⊙O的半径为3,直线l与⊙O相切,一动圆与l相切,并与⊙O相交的公共弦恰为⊙O的直径,求动圆圆心的轨迹方程.

取过O点且与l平行的直线为x轴,过O点且垂直于l的直线为y轴,建立直角坐标系.设动圆圆心为M(x,y),⊙O与⊙M的公共弦为AB,⊙M与l切于点C,则|MA|=|MC|.∵AB为⊙O的直径,∴MO垂直

21.如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直于直线AB.点p时圆O上异于A,B的任意一点,

21.令圆心(0,0),A(-2,0),B(2,0),L:x=4,P(2cosz,2sinz)则AP与L交点为M[4,6sinz/(1+cosz)],BP与L的交点为N[4,2sinz/(cosz-1

已知圆o方程为x^2+y^2+4x-2y=0,直线 l 的倾斜角为45° 圆心o到直线l的距离为(根号2)求直线l的方程

直线(一般式):Ax+By+C=0坐标(Xo,Yo),那么这点到这直线的距离就为:(AXo+BYo+C)的绝对值除以根号下(A的平方加上B的平方)圆o的方程为(x+2)^2+(y-1)^2=(√5)^

在平面内,已知点O到直线l的距离为10,以O为圆心,r为半径画圆

1,r=4,○O上有且只有一个点到直线l的距离等于62,4

已知两曲线A、B外切于一点O,过O作曲线A的切线l 求证:直线l是曲线B过O点的切线

两曲线外切于O点,则O点在曲线A上的斜率=O点在曲线B上的斜率.l与曲线A切于O点,则O点在曲线A上的斜率=直线l的斜率所以直线l的斜率=O点在曲线B上的斜率,即直线l是曲线B过O点的切线

如图,圆O沿直线L滚动,已知圆O的半径是0.4cm,AB是圆O的一条直径,当圆O沿地面滚动时,点A,B到L的距离之和

设AC、BD为点A、B到直线l的距离线段,C、D是垂足.则ACDB构成直角梯形,AC、BD是其上下底,直径AB是腰,中位线为圆的半径∴AC+BD=2*半径=0.8

已知圆O的方程是x^2+y^2=1,直线l与圆O相切,若直线l的斜率等于1,求直线l的方程

直线y=x+bx-y+b=0圆心到切线距离等于半径圆心(0,0)半径1所以|0-0+b|/√(1²+1²)=1|b|=√2所以是x-y+√2=0和x-y-√2=0

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

已知圆o:x2+y2=4,直线l:kx-y-k-1=0 求直线l与圆O的位置关系

由点到直线距离公式,圆心(0,0)到直线kx-y-k-1=0距离d=|-k-1|/√k^2+1=|k+1|/√k^2+1=√(k+1)^2/k^2+1=√1+[2k/(k^2+1)]

已知圆O以坐标原点为圆心,直线l:x+y-1=0被圆O截得的线段长为根号10,1)求圆O的方程.2)设B(x,y)是圆O

1.O到直线距离d=1/√2=√2/2R²=(√10/2)²-(√2/2)²=2x²+y²=22.x+y-5/x-2=1+(y-3)/(x-2)=1+

已知⊙O的半径为8,圆心O到直线l的距离是6,则直线l与⊙O的位置关系是______.

根据圆心到直线的距离6小于圆的半径8,则直线和圆相交.

已知圆O的直径为6cm,如果直线l上的一点C到圆心O的距离为3cm,则直线l与圆O的位置关系是______.

∵圆O的半径r=3cm,且直线上存在一点到圆心的距离d=3cm,∴直线与圆至少有一个交点.①当圆与直线有且只有一个交点时,交点到圆心的距离为3cm,此时直线与圆相切.②当直线与圆有两个交点时,交点到圆

已知直线L与圆O相交于A.B两点.若圆心O到直线L的距离为6.且AB=6.试求出圆O的半径.

根据勾股定理:R^2=6^2+(AB/2)^2=6^2+(6/2)^2=45圆O的半径R=3√5

已知:如图,直线L与圆O相交于A、B两点.(1)若点O到直线L的距离为3,AB=8,求圆O的半径; (2)若圆O的半

设OE垂直于AB于点E所以E为AB中点又因为AB=8所以AE=4所以在RT三解形OAE中由勾股定理OA的平方=AE的平方+OE的平方OE=3所以OA=5所以半径=5一共有3个点.直线把圆分为两部分,一

已知圆O的方程是x^2+y^2=1,直线l与圆O相切,若直线l在y轴上的截距为根号2,求直线l的方程

y=kx+√2kx-y+√2=0圆心(0,0)到切线距离等于半径r=1所以|0-0+√2|/√(k²+1)=1√(k²+1)=√2k²=1k=±1所以y=x+√2和y=-