如图圆o是等腰三角形的底边ab的中点,以AB为直径的半圆

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:28:59
如图圆o是等腰三角形的底边ab的中点,以AB为直径的半圆
如图,以等腰三角形ABC的腰AB为圆O的直径的圆O交底边BC于点D ,

(1)因为三角形ABC为等腰三角形,AB为直径所以∠ADB为90°即D为BC中点所以∠CAD=∠BAD所以弧BD=弧DF(2)DE为圆O的切线则∠EDO=90°即CDE+∠ADE=90°因为∠ADE+

很简单的应用题 有分已知△abc是等腰三角形,o是底边bc的中点.圆o与腰ab相切于点d,求证ac与点o也相切把辅助线也

O点为BC的中点,连结AO,∵AB=AC,∴AO是〈A的平分线(等腰三角形三线合一),作OD⊥AB,OE⊥AC,OD=OE,(角平分线上任意一点至角两边距离相等).D是圆O与AB的切点,(过圆周垂直半

证明:如图所示,已知△ABC为等腰三角形,O是底边BC的中点,⊙O与腰AB相切于点D.求证:AC与⊙O也相切.

O点为BC的中点,连结AO,∵AB=AC,∴AO是〈A的平分线(等腰三角形三线合一),作OD⊥AB,OE⊥AC,OD=OE,(角平分线上任意一点至角两边距离相等).D是圆O与AB的切点,(过圆周垂直半

1、已知三角形abc为等腰三角形 o是底边bc中点 圆o与腰ab相切于d 证ac是圆o切线

1、作OE垂直于AC,AO是角平分线,所以OE=OD又圆O与AB相切,所以OD=R(半径)所以OE=R圆心到AC的距离等于半径,所以圆与AC相切设CA切⊙O'于点E,CB切⊙O'于点D,连结OO',O

如图,以等腰三角形ABC的底边BC直径的圆O分别交两腰于D,E.连接DE求证1 DE平行BC,2 若D是AB中点则ABC

证明:连结CD、BE在△DBC和△ECB中∠BDC=∠CDB=90°(半圆上的圆周角)∠DBC=∠ECB(等腰三角形的底角)BC=BC∴△DBC≡△ECB∠EBC=∠DCB∵∠DEB=∠DCB∴∠EB

以线段AB为底边的等腰三角形ABC,顶角C的轨迹是

顶角C的轨迹是AB的垂直平分线上.

如图,以等腰三角形ABC的腰AB为直径的○O交底边BC于点D,作DE⊥AC,垂足为D

证明:在圆O中,连接OD和AD AB为直径D为圆上一点(1)  ∴∠ADB=90° AD⊥BD     ∵AB

如图:等腰三角形ABC,以腰AB为直径作圆O交底边BC于P,PE垂直AC,垂足为E.求证:PE是圆O的切线.

连接PO因为P在圆上AB为直径所以OB=OP角OBP=角OPB又有ABC为等腰三角形所以角ECP=角OPB因为角EPC=180-角PEC-角ECPPE垂直AC所以角EPC=90-角ECP=180-角O

以等腰三角形ABC的腰AB为圆O的直径的圆O交底边BC于点D

证明:(1)连接AD∵AB是⊙O的直径∴∠ADB=90°∵AB=AC∴BD=DC(2)连接OD∵BD=DC,OA=OC∴OD‖AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线

如图,bd是等腰三角形abc的底边ac上的中线,de平行bc,交ab于点e.求证:三角形bde是等腰三角形

因为D是AC的中点,DE平行于BC,所以E是AB的中点,ED=1/2BC,EB=1/2AB,因为AB=BC,所以EB=ED,所以等腰三角形啰

等腰三角形ABC的腰AB与底边BC的比是5:6,三角形ABC的面积为108平方厘米,求三角形ABC底边上的高AD

设AB长为5M,BC长为6M,由勾股定理得AD长为4M,6M乘以4M除以2等以108,得M等以3,AD就为4乘3,为12

如图,AD是等腰三角形ABC的底边BC上的高,DE平行AB,交AC于点E,判断△ADE是不是等腰三角形,并说明理由

因为AD是角分线所以角BAD=角CAD因为AB//DE所以角BAD=角ADE所以,角角CAD=角ADE所以AE=DE所以△ADE是等腰三角形

ad是等腰三角形abc的底边bc上的高,de//ab,交ac于点e,判断三角形ade是不是等腰三角形,并说明理由

原理:底角相等的三角形是等腰三角形因为ad是等腰三角形abc的底边bc上的高所以角bad=角cad又因为de平行与ab所以角eda=角dab得出角ead=角cad即可得出三角形ead是等腰三角形这上面

如图,三角形abc为等腰三角形,ab等于cd,o是底边bc的中点,圆o与腰ab相切于点d,求证ac与圆o相切

解题思路:主要考查你对直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)等考点的理解。解题过程:

如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.

证明:作OE⊥AC于E,连接OD则∠OEC=90°∵AB是⊙O的切线∴∠ODB=90°∴∠ODB=∠OEC=90°∵AB=AC∴∠B=∠C∵O是BC的中点∴OB=OC∴△ODB≌△OEC(AAS)∴O

如图,O为等腰三角形ABC的底边AB的中点,以AB为直径的半圆分别交AC, BC于点E,

ABC为等腰三角形所以:角A=角B而:AOD,BOD均为等腰三角形所以:角EOB=(180度-角B)/2=(180度-角A)/2=角AOD而:AO=BO,DO=EO所以:三角形AOD全等于三角形BOE

切线证明已知△ABC为等腰三角形,O是底边BC的中点,圆O与腰AB相切于点D.求证:AC与圆O相切

证明:作DE平行于BC,交AC于E点,连接OE、AO、OD∵D为圆O切点,∴OD⊥AB∵△ABC为等腰三角形,DE‖BC∴AD=AE又∵O为BC中点,∴∠DAO=∠OAE∵AD=AE,AO=AO,∠D

如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.

证明:连接OD,过点O作OE⊥AC于E点,则∠OEC=90°,∵AB切⊙O于D,∴OD⊥AB,∴∠ODB=90°,∴∠ODB=∠OEC;(3分)又∵O是BC的中点,∴OB=OC,∵AB=AC,∴∠B=

已知等腰三角形ABC的周长是16cm,底边BC边上的高是4,求腰AB

设底边为2X,腰为y所以X^2+4^2=Y^2,X+Y=8所以(Y-X)(Y+X)=16Y+X=8所以Y-X=2Y+X=8所以X=3,Y=5所以腰AB是5