如图圆O是▲的外接圆AE平分∠BAC交圆O于点E
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:54:04
因CG垂直于AB,则CD=DG且弧AC=AG;因弧AC等于弧CF,所以弧AG=CF;则角ACG=CAF所以三角形ACE为等腰三角形,AE=CE
证明:连接EC,∴∠B=∠E.∵AE是⊙O的直径,∴∠ACE=90°.∵CD是AB边上的高,∴∠CDB=90°.在△AEC与△CBD中,∠E=∠B,∠ACE=∠CDB,∴△AEC∽△CBD.∴AEBC
很简单因为DA评分∠BDE,所以∠BDA=∠EDA因为OD=OA,所以∠OAD=∠ODA所以∠OAD==∠EDA所以OA平行于ED因为AE垂直CD所以AE垂直OA所以AE是圆O的切线
1.∠DEB=∠BCE∠CBE=∠DBE△BDE与△BCE相似所以∠BDE=∠BEC∠BDE与∠DBE互余∠BEC与∠AED互余所以∠DBE=∠AED又∠DBE=∠BEO所以∠AED=∠BEO∠BEO
证明:∵AB=AC∴∠B=∠ACB连接CD,则ABCD四点共圆∴∠ADC+∠B=180º∵∠ACE+∠ACB=180º∴∠ADC=∠ACE又∵∠DAC=∠CAE∴⊿ADC∽⊿ACE
(1)证明:作直径AG交BC于H,∵AE是⊙O的切线,切点为A,∴AG⊥AD,∵BC∥AE,∴AG⊥BC,∵AG为直径,∴AG是BC的垂直平分线,∴AB=AC,∵BD平分∠ABC,∴∠ABD=∠DBC
(1)证明:过O作OM⊥BC于M,则CM=BM;∵AD⊥BC,EF⊥BC,OM⊥BC,∴AD∥OM∥EF,又∵OA=OE,∴DM=MF,故CM-DM=BM-MF,即BF=CD.(2)连接BE,则∠AB
小乖的考拉:第(1)题中,是不是求∠ADB的度数啊?
证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以
思路:知道两条线段长,求第三条线段,很容易就想到找有公共边的两个三角形相似,所以就找到△ADF∽△FDG,接下来就证明∵AD平分∠BAC∴弧ED=弧DF∴∠EFD=∠DAF又∵∠FDG=∠ADF∴△F
证明:连接BE,∵AE是⊙O的直径,∴∠ABE=90°.∴∠BAE+∠E=90°.∵AD是△ABC边上的高,∴∠ADC=90°.∴∠CAD+∠ACB=90°.∵∠E=∠ACB,∴∠BAE=∠CAD.
1个用45度角可以证,第二个OH=1再问:请问,是怎么证明第二问的,能给个提示吗再答:延长CB与AE相交然后利用等边直角三角形可以求,不懂可以再问我哈
连接BE,ΔABE是RtΔ则RtΔEBA∽RtΔCDA(因为角C=角E)所以AC:AE=AD:AB即AB*AC=AD*AE
连接OA、OE,由题意知角ACB=角AFE=角AOE/2,∵在△AOE中,OA=OE=AE=5,∴即AOE=60°,那么即ACB=30°,cosACB=cos30°=√3/2.
(1).连BE,角E=角ACB,角ABE是直角,所以ABE和ADC相似,AB/AE=AD/AC,又AB=BC,BC*AC=AD*AE(2).FAC和FCB相似(弦切角ACF=角B),FA/FC=FC/
过O作OH⊥BC于H,则BH=CH(垂径分弦),∵DF⊥BC,AE⊥BC,∴DF∥OH∥AE,∴EH/FH=AO/BO=1(平行线分线段成比例),∴EH=FH,∴BH-FH=CH-EH,即BF=EC.
你怎么也在这里问题?呵呵原来还是初中生,我晕菜;这题可以这样做:第一步:先延长AO交圆弧于F点(在C,D之间),那么AF为直径;又因为AD平分弧BC所以,CD弧长等于BD,那么根据等弧对等角,可以知道