如图圆o与三角形abc的各边分别切于点def,且角c

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:27:24
如图圆o与三角形abc的各边分别切于点def,且角c
三角形abc是圆o的内接三角形

三角形ABC是圆O的内接三角形,AC=BC,D为圆O中弧AB上一点,延长DA至点E,使CE=CD,1.求证AE=CD;2.若AC⊥BC,求证AD+BD=√2CD1.连接BD因为AC=BC所以角B=角C

如图圆O与三角形ABC的边AB,AC相交于点D,E,与BC相切于点F,若AF平分角BAC,求证DE//BC

连接OF∵AF平分∠BAC∴弧DF=弧EF(同圆中相等的圆周角所对的弧相等)∵OF是半径∴OF⊥DE(垂径定理)∵BC是⊙O的切线∴BC⊥OF(圆的切线垂直于经过切点的半径)∴DE∥BC(垂直于同一直

已知在三角形ABC中,角C=90度,AC=3 BC=4 圆O内切与三角形ABC 求三角形ABC在圆O外部的面积,..

根据勾股定理可得AB=5△ABC的内切圆半径为r=(3+4-5)/2=1所以内切圆面积=π因为△ABC的面积=1/2*3*4=6所以所求面积为6-π

如图圆O是三角形ABC的内切圆,且圆O的半径为5,三角形ABC的周长为40,求三角形的面积

如图,三角形面积为:0.5*((x+z)*5+(x+y)*5+(z+y)*5)=2.5*(2*(x+y+z))周长为:2*(x+y+z)=40所以面积等于40*2.5=100

如图圆O是三角形ABC的内切圆,且圆O的半径为5.,三角形ABC的周长为40,求三角形ABC的面积?

连接OA,OB,OC三角形ABC的面积等于OAB,OAC,OBC三个三角形的面积之和S=S1+S2+S3=1/2*OD*(AB+BC+AC)=1/2*5*40=100

已知在三角形ABC中,角C=90度,AC=3 BC=4 圆O内切与三角形ABC 求三角形ABC在圆O外部的面积

6-π再问:过程啊。。。。。。。。。。。。再答:先求小圆的面积,(3+4+5)*半径=3*4/2半径为1三角形面积减圆面积就是上面的

三角形ABC是锐角三角形,圆O是三角形ABC的外接圆,角A=角CBD,直线BD与圆O相切吗?为什么?

证明:连OB,并延长OB交圆O于M,连MC,因为∠A和∠BMC所对的弧为BC所以∠A=∠BMC,因为∠A=∠CBD所以∠BMC=∠CBD因为BM是直径所以∠BCM=90°所以∠BMC+∠MBC=90°

如图,A,B,C,D是圆O上的四点,三角形ABC与三角形DCB全等吗?为什么?

不一定全等.只有一边相等和边的对角相等.不满足全等条件.随便举个反例就行了

三角形ABC内接与圆O,AB=AC,角AOC=135度,圆O的半径为根号2,求三角形ABC的面积

延长AO与BC交于M因为AB=ACAM⊥BC∠AOC=∠AOB=135∠BOC=90OB=Oc=√2BC=2,OM=1AM=√2+1面积=√2+1

如图圆o是rt三角形abc的内切圆,角abc=90度,ab=13.

由题意:BC=根(AB²-AC²)=5,所以三角形的面积s=1/2ACBC=30..所以.的内切圆半径r=2s/(a+b+c)=60/30=2,故s阴影=30-4π.选D.

已知点o是三角形ABC的内心,求角BOC与角A的关系

∠BOC=180°-∠OBC-∠OCB=180°-∠ABC/2-∠ACB/2=180°-(∠ABC+∠ACB)/2=180°-(180°-∠A)/2=90°+∠A/2如仍有疑惑,欢迎追问.祝:

已知o为三角形abc内一点,且向量oa+oc+2ob=0向量,则三角形aoc与三角形abc的面积比是多少?

oa+oc=-2ob根据平行四边形法则作出oa,oc的平行四边形oaec,oe交ac于点d那么oe=-2ob所以od=-ob两个三角形都是以ac为底,高的比为2:1所以S(aoc):S(abc)=1:

在三角形ABC中有一点O,使得向量OA+2向量OB+2向量OC=0,则三角形ABC与三角形OBC的面积比是多少?

答案:是4:1若注意到向量加法的几何意义,作出图形,并对图形面积间进行转化.延长OB至G,使得OG=2OB;延长OC至H,以点OG、OH为邻边作一平行四边形OGFH,连结OF,则由已知向量OA=-(2

AO是三角形ABC的中线,圆O与AB边相切于点D

(1)要使圆O与AC边也相切,应增加条件AB=AC(2)因为AB=AC,即:△ABC为等腰△,又AO是三角形ABC的中线,故AO也是顶角∠BAC的平分线(等腰△三线合一).即圆心O在顶角∠BAC的平分

如图三角形ABC中,角A=60度,AC=8,AB=10,若圆O与三角形ABC三边都相切,且圆O与AB且于点E,则圆O的面

第一步,过c做AB的垂线,求得ABC的面积第二步,利用切线长定理,得AE=AM,BE=BN,CM=CN,设圆半径为R,连圆心到各边及各顶点连线,第三步,利用面积,三个小三角形的面积和=ABC的面积,求

如图,已知三角形abc内接与圆o,点o在三角形abc的高cd上,过o作oe垂直于ac与e,of垂直于bc与f,连接de、

菱行.因od垂直ab,oe垂直ac,of垂直bc,所以od=oe=of,故ac互相平分ef而ce=cf,所以四边形cdef是菱行

O是三角形ABC内的点,2010BO=10AB+1999BC,(BO,AB,BC为向量)求三角形ABC与三角形AOC面积

BO\2009=10OA\2009+1999OC\2009BO\2009为BO所在直线交AC与D点,既OD所以面积之比为BO比OD为2010

圆o的内接三角形abc,

证明:连结AO并延长交圆O于点G,连结GC因为BE*AE=DE*EF,所以BE/EF=DE/AE,角AEF=角DEB所以三角形AEF相似于三角形DEB,所以角FAE=角BDE又DE平行于AC,所以角B