如图四边形AGCD是菱形AC=8DB=6
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:52:19
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
连接BD交AC于M,由于ABCD为菱形,所以BD垂直于AC,且BM=DM,AM=CM且AE=CF,所以EM=FM所以BD垂直于AC,且BM=DM,EM=FM,所以DEBD是菱形
∵四边形EBCF是平行四边形∴EF∥BC,即ED∥BC,且EF=BC∵D是AC中点∴ED是△ABC的中位线∴ED=BC/2=EF/2∴D是EF中点∴EF、AC互相平分又EF∥BC,BC⊥AC∴EF⊥A
证明:因为四边形AEFC是菱形,所以AC=FC因为四边形ABCD是正方形,所以AC=DB,BO=BD/2所以FC=DB=2BOBO垂直OH,EH垂直OE,BE∥OH所以EH=BO所以EH=1/2FC
证明:∵E是AB中点,F是BC中点∴EF是△ABC的中位线∴EF=1/2AC同理可得FG=1/2BD,HG=1/2AC,EH=1/2BD∵AC=BD∴EF=FG=GH=HE∴四边形EFGH是菱形
证明:∵在平行四边形ABCD中,AB∥CD,∴∠DCA=∠BAC,∵AC平分∠BAD,∴∠DAC=∠BAC,∴∠DAC=∠DCA,∴AD=CD,∴四边形ABCD是菱形.
证明:连结BD,交AC于点O在菱形ABCD中,OA=OC,OB=OD,AB=BC,所以角BAC=角BCA又因AE=CF,所以OE=OF,又OB=OD,所以四边形DEBF为平行四边形在三角形ABE和三角
因为EFGH分别是BD,AC,AD,BC的中点所以GF=CD/2同理EH=CD/2所以GF=EH同理可得FH=GE=AB/2又因为AB=CD所以GE=EH=HF=FG四边形EHFG是菱形
AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形
在菱形ABCD中OA=OB=OC=OD又DE//AC,CE//BD∴DE//OCCE//OD∴四边形OCED为平行四边形又OC=OD∴四边形OCED为菱形(一组邻边相等的平行四边形是菱形)
过点D作DE⊥AB,交BA延长线于E,依题意可知∠DAE=∠CBA=30°,DE=AD*sin30°=AB/2,所以S□ABCD=AB*DE=(1/2)AC*BD,即AB²=AC*BD
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
证明:∵E、H分别为BD,BC的中点∴EH‖CD,EH=1/2CD同理可得FG‖CD,FG=1/2CD∴EH‖FG,EH=FG∴四边形EHFG是平行四边形同理可得FH=1/2AB∵AB=CD∴EH=E
填:对角线相等的四边形根据平行四边形的判定,可得四边形EFGH是平行四边形,又知它是菱形,则AC=BD所以只能推出一定是对角线相等的四边形
因为四边形AEFC是菱形所以AC=CF,AC//BF因为EH⊥AC所以∠OHE=∠HEB=90因为四边形ABCD是正方形所以AC=BD,AC⊥BD,AO=CO=BO=DO所以∠HOB=90所以四边形B
首先因为DEBF是菱形,所以ABC和ADC是等腰三角形,∠BAC=∠DAC=∠ACB=∠ACD(两直线平行,内错角相等)有AE=CF,由边角边的全等定理我们可以证明△ADE≌△ABE≌△CDF≌△CB
菱形AB=BC=CD=DA假设AB²=AC·BC则AB=AC则三角形ABC为等边三角形则角ABC=60度,与题设不符所以你的题应该错了再问:错了错了~应该是AB²=AC·BD再答:
菱形的边长是20/4=5,对角线AC与BD垂直平分,在直角三角形AOD中,AD=5,OD=3,所以AO=4,所以AC=2*4=8\x0d菱形的面积是1/2*AC*BD=24,所以BD=24/5
∵∠ABC=60°,∠BAD=120°,四边形ABCD是菱形∴△ABC与△ADC是等边三角形又∵菱形的周长是36cm,AC=9cm∴AB=BC=CD=AD=9㎝又∵AC⊥BD于点O∴BD=2√[9