如图四边形abcd是菱形点f在cd上,点e在bc的延长线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 14:22:15
设CE为X.因为AECF为菱形、所以CE=AE=X、则BE为8-X勾股、(8-x)²+16=x²x=5则菱形AECF的面积为5×4=20cm²
证明:(1)在平行四边形ABCD中,∠A=∠C,又∵AE=CG,AH=CF,∴△AEH≌△CGF∴EH=GF在平行四边形ABCD中,AB=CD,AD=BC,∴AB-AE=CD-CG,AD-AH=BC-
EF//ADDF//AE所以四边形AEFD是平行四边形;∠FED=∠ADE=∠FDE所以三角形FDE是等腰三角形,FD=FE=DA所以平行四边形AEFD是菱形
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
连接BD交AC于M,由于ABCD为菱形,所以BD垂直于AC,且BM=DM,AM=CM且AE=CF,所以EM=FM所以BD垂直于AC,且BM=DM,EM=FM,所以DEBD是菱形
1∵∠ADE=∠FDE;AE//DF∴∠AED=∠FDE=∠ADE∴△ADE为等腰三角形∴AD=AE∵AD//EF,AE//DF∴四边形AEFD为菱形2∵∠A=60°作高DH⊥ABDH=√3∵四边形A
∵S矩形ABCD=32,AB=4∴BC=32/4=8∵四边形AECF是菱形∴AE=EC设BE=x,则EC=BC-BE=8-x=AE∵在Rt△ABE中,AB²+BE²=AE²
连接AC,在正方形ABCD中AO=CO,BO=DO(正方形对角线互相平分)又因为:BF=DE,所以:BO-BF=DO-DE,即OF=OE.所以四边形AECF是平行四边形(对角线互相平分的四边形是平行四
1EF‖AB∴∠CEF=∠CAD=∠CBA=∠CFE=∠ACB=60ºEFC也是等边三角形CF=EF=EC=ED=DCEFCD是菱形.题目ABCD是菱形,系打错2|DF|=4√3
∠CBE=∠CDE∠CDE=∠AFDso∠AFD=∠CBE证明:∵∠CBE是△BFE的外角(已知)∴∠CBE=∠BEF+∠BFE(三角形的一个外角等于不相邻的两个内角和)同理可证:∠AFD=∠BEF+
(1)AH=FC(AFCH是矩形),有AE=AH=CG=CF,BF=BE=HD=DG;AE=AH,∠AEH=∠AHE;BF=BE,∠BEF=∠BFE,∠B+∠BAD=180°,2∠AEH+∠BAD=1
DC//AB所以∠AFD=∠CDE再证三角形BEC全等于三角形DCE,得到∠CDE=∠CBE所以:∠AFD=∠CBE
你说的是不是上面这道题?你没有图,所以.大概字母不太对...由于过程太长,我把我在求解答的网上找到的一样的题目发给你查看原题详解求解答是很专业的数学题库网站,以后有问题可以先去那里查一下非常方便快捷,
/>设AE=x,由四边形AECF是菱形,则EC=x,BE=5-x在直角三角形ABE中,由勾股定理AB^2+BE^2=AE^2解得x=29/10所以S菱形AECF=EC*AB=58/10=29/5
【解】延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥A
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
证明:设AC与EF的交点为O∵AD∥BC∴∠EAO=∠FCO∵∠AOE=∠COF,AO=OC∴△AOE≌△COF∴EO=FO∵AO=CO∴四边形AFCE是平行四边形∵EF⊥AC∴四边形AFCE是菱形
首先因为DEBF是菱形,所以ABC和ADC是等腰三角形,∠BAC=∠DAC=∠ACB=∠ACD(两直线平行,内错角相等)有AE=CF,由边角边的全等定理我们可以证明△ADE≌△ABE≌△CDF≌△CB
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD
如图,∵BE+CE=BCCF+BF=BCCF=BE∴BF=CE∵四边形ABCD为菱形∴AB=CD∵在△ABF和△DCE中AF=DEBF=CEAB=DC∴△ABF≌△DCE∴∠ABF=∠DCE∵在菱形A