如图以边长为1的正方形ABCD中,点E是射线BC上一动点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 17:45:51
三角形EDH与三角形BAE相似设AE=x则ED=1-x可分别求得EH和BE根据三角形HEB和EAB相似可得E为AD的中点
① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2  
三角形ADE全等于三角形AFE所以DE=FE,(1)角AFE=角ADE=90度(2)因为AC是正方形的对角线所以角ACD=45度因为(2)所以直角三角形FEC是等腰直角三角形所以FE=√2CE/2因为
没有图,只能想象了.E应该在DC上,因为以AE为折痕使点D落在AC上F;直角三角形ADE全等与AEF,所以DE=EF三角形ADE加上三角形AEC的面积为正方形的一半,为1/2三角形ADE的面积可以写为
(π(派)-2)/2
1利用割补法,两个正方形重叠部分的面积为12、方法相同,面积是1
把你写的过程整理了一下:S△BCE =S△BEP +S△BCP,分别将它们的面积写成底乘高除以2:BC*EH/2=BE*PR/2+BC*PQ/2,其中BE=BC上式消掉BC、BE,
1、延长BG交DE于M∵四边形ABCD和CEFG是正方形,∴∠BCD=∠DCE=90°BC=CDCE=CG∴△BCG≌△CDE∴∠GBC=∠CDE∵∠BGC=∠DGM(对顶角)∴△BCG∽△DGM∴∠
第一问①可以直接用三角形全等定理证出②根据①的结果,加上三角形内角和180°,对顶角相等可证出.下两问,假设法可以简单证出的第二问,当G为DC中点时四边形DGEF是平行四边形证明:假设四边形DGEF是
大圆面积=π*(a/√2)²=a²π/2正方形面积=a²小半圆面积=(1/2)*π*(a/2)²=a²π/8∴所求阴影部分面积=4*小半圆面积+正方形
Soul﹏P:连接GE∵四边形ABCD是正方形∴BC=CD,∠BCD=90°∵四边形GCEF是正方形∴GC=CE,∠DCE=90°∴∠BCD=∠DCE∴△BCG≌△DCE(SAS)∴∠CBG=∠CDE
有的..因为面积四等分..设AE在AC中最短AF其次AG最长,AE=b,AF=c,AG=d面积四等分则b平方=(1/4)a平方c平方-b平方=(1/4)a平方即:c平方=(1/2)a平方d平方-c平方
过⊙o圆心作AB、AD垂线设⊙o的半径为x则x^2+x^2=(1-x)^2x^2+2x-1=0x=-1+根号2⊙o的周长=2π*(根号2-1)
三角形的另一面积公式S△=1/2absinc,其中c是a、b边的夹角.S△BPC=1/2*1*1*sin60°=(根号3)/4,S△PDC=1/2*CD*h=1/2*1*1/2=1/4(其中h为CD边
如图,⑴ E.F是CD,DA的中点,A1D⊥D1D FD⊥D1D A1D,FD共面,∴A1D∥=FDA1D1DF是矩形,A1F∥=D1
这样的正方形ABCD有无限多个.(a,b可以取任何实数值!)
设大方框左下角的那个点为E大方框右下角的点为F可以轻易地看出RT△AEB长直角边与短直角边的比为2:1RT△BFC长直角边与短直角边的比为2:1所以RT△AEB相似于RT△BFC所以∠ABE+∠CBF
不难发现,第一个正方形边长为1=(√2)^0,第二个正方形边长为(√2)^1,第三个正方形边长为(√2)^2=2,.第n个正方形边长为(√2)^(n-1)
如图,过E作EI⊥CD于I则EI=1/2AD=1/2EC∴∠ECD=30°同理,∠FCB=30°∴∠ECF=30°∴弧EF=30°/180°*π*a=1/6aπ∴阴影部分周长为2/3aπ