如图以三角形ABC的三边分别做等边三角形ABD,等边三角形BCE等边三角形ACF

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:53:50
如图以三角形ABC的三边分别做等边三角形ABD,等边三角形BCE等边三角形ACF
已知abc分别是三角形abc的三边长,判断

判断跟的情况主要用的是b*b-4*a*c,a为x平方前的代数,b是x前方的代数,c是常数,所以题中的b*b-4*a*c实际结果为(a+b)的平方-4*c*c/4=(a+b)的平方-c平方,根据平方差公

已知:如图,三角形ABC三边长分别为AB=15,AC=20,BC=25,求三角形ABC的面积

你这道题是勾股定理的单元中的题吗再问:是再答:可是那个图总感觉不标准再问:嗯,超级不标准再答: 再答:不用谢

以Rt三角形ABC的三边为斜边分别向外做等腰直角三角形,若斜边AB=3,则图中的三个等腰三角形的面积为多少?

设ABACBC长度分别表示为cba,则任新构成的等腰直角三角形面积和为1/4(a^2+b^2+c^2)=1/4(2*c^2)=9/2具体如下:以AC为斜边时,新等腰直角三角形斜边高等于斜边一半,故为1

如图,D为直角三角形ABC斜边AB上一点,以CD为直径的圆分别叫三角形ABC三边于E、F、G三点,连EF、FG

不妨设圆交AB,BC.AC分为E,F,G,连接CE,∵弧GE=弧GE,∴∠GFE=∠GCE,∵CD是直径,∴∠CED=90°,∴∠A+∠GCE=90°,∵∠B+∠A=90°,∴∠B=∠GCE,即∠GF

如图,在三角形abc中,ab=ac,点d.e.f分别是三角形abc三边的中点,求证四边形adef是菱形

等腰三角形,利用中位线原理可得ef=1/2*AB=adde=1/2*AC=afab=ac得到af=dead=ef所以为菱形

如图,以直角三角形ABC的三边分别向外做三个等边三角形ABE,BCF,ACD,其面积分别为S1,S2,S3,设直角三角形

∵直角三角形ABC的三边分别为a,b,c,∴a²+b²=c²设S1,S2分别是以两直角边a,b为边的等边三角形面积,S3是以斜边c为边的等边三角形面积,则s1=a

如图,在三角形abc中,d,e,f分别是三边中点,则四边形cdef的周长为

de、ef分别是三角形abc的一条中位线,所以de=fa,fe=db.所以cdef的周长=ac+bc.

如图,分别以三角形ABD的两边AB、AD为直角边向两侧做两个等腰直角三角形,:三角形ABC和三角形ADE,连接CD、BE

由题意可得AC=ABAE=AD∠ABC=∠DAE(直角三角形的两个直角)所以∠ABC+∠DAB=∠DAE+∠DAB因为AC=AB∠DAC=∠EABAE=AD(三角形全等SAS)所以可得△DAC≌△EA

如图,D,E,F分别为三角形ABC三边的中点,则图中平行四边形的个数为多少?

图呢再问:图就是一个大三角形里面还有一个小三角形再答:能照下吗再问:照不了,相机坏了再答:额再答:那我咋说再问: 再答:3再问:求过程再答:利用中点就都可以再答:求出

如图,以三角形ABC的三边为边,分别做三个等边三角形.1)求证:四边形ADEF是平行四边形;

(1)证明:∵△ABD,△BCE,△ACF都是等边三角形,∴AB=BD=AD,∠ABD=∠EBC=∠BCE=∠ACF=60°,BC=BE=CE,AC=AF=FC.∵∠ABD=∠EBC=60°,∴∠AB

如图,过△ABC内一点分别做三边的平行线,形成三个小三角形①·②·③,如果这三个小三角形面积分别为4·9

由已知可知△①∽△②∽△③∽△ABC四边形QBDP与DECR为平行四边形∵QD=4PR=3DE=16QD:PR:DE=2:3:4又∵BD=QP=2PR=EC=3∴BC=9∴S△MQP/S△ABC=QP

如图(2),分别以直角三角形ABC三边为边分别向外外做三个正三角形,其面积分别为S1、S2、S3

勾股定理边长是a'做一条高,他也是中线则边长,变长的一半a/2和高是直角三角形所以高=√[a²-(a/2)²]=√(3a/4)²

已知:如图7-4,三角形ABC.求做:点p,使得点P在三角形ABC内,且到三边AB,BC,CA的距离相等 作法:

作三边的垂直平分线交于点P,即所求再问:垂直平分线?什么意思

如图(2),分别以直角三角形ABC三边为边向外做三个正三角形,其面积分别为S1、S2、S3表示,请你确定S1、S2、S3

设直角三角形ABC的三边分别为a、b、c,且c是斜边,则三个正三角形的边长分别是a、b、c,根据正三角形的面积公式S=(√3)a²/4,不妨记S1=(√3)a²/4,S2=(√3)

如图,分别以三角形ABC的三边为直径向外作半圆,用S1,S2分别表示两个小半圆的面积,S3表示大半圆的面积

根据圆面积公式:S1=1/2π(1/2AB)^2,S2=1/2(1/2BC)^2,S3=1/2(1/2AC)^2,∵S1=S2+S3,(S1最大)∴1/8πAB^2=1/8πBC^2+1/8πAC^2

如图三角形abc周长是32,以它的三边中点为顶点组成第2个三角形,

周长应该是依次除以2的,则第n个三角形周长为32÷2的n-1次方

如图,根据图形解答下列问题:1,以三角形ABC的三边为边分别作等边三角形ACD,三角形ABE,三角形BCF,判断四边形A

1.证明:首先角DBA=角EBC=60度,那么同时减去角EBA也相等,那么角DBE=角ABC而BD=ABBE=BC所以三角形DBE全等于三角形ABC所以DE=AC而AC=AF所以DE=AF又叫角ECF

如图,以RT三角形ABC(∠C=90)的三边为直径向外作半圆,其面积分别为S1,S2,S3.是说明

是不是?证明S1=S2+S3.∵AB²=AC²+BC²又S1=π×AB²/8  S2=π×BC²/8  S3=