如图三角形abc的三边长分别为abc,且满足a

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:32:19
如图三角形abc的三边长分别为abc,且满足a
已知abc分别是三角形abc的三边长,判断

判断跟的情况主要用的是b*b-4*a*c,a为x平方前的代数,b是x前方的代数,c是常数,所以题中的b*b-4*a*c实际结果为(a+b)的平方-4*c*c/4=(a+b)的平方-c平方,根据平方差公

设三角形ABC的三边长分别是X,X+1,X+2,三角形ABC为钝角三角形,那么

由题意,三边能构成△,很显然x,x+1,x+2都为正数两个短边之和>最大边x+2,∴x+x+1>x+2∴x>1又△为钝角△,∴x+2所对边为钝角(由三角形中大边对大角,大角对大边)∴cosα=(x&s

已知三角形ABC的三边长分别为a、b、c且均为整数.

(1)a+c>b=>c>b-a=5=>c>=6a+b+c=2a+5+c为奇数c为偶数则C的最小值为6(2)(a-b)^2+(a-c)^2+(b-c)^2=6=>(a-b,a-c,b-c)=(2,1,1

已知三角形ABC三边长分别为4,5,6,则三角形ABC的内切圆的半径是

=2S/(a+b+c),其中S是三角形面积,a、b、c是三角形三边.另外S=根号下p(p-a)(p-b)(p-c),其中p=(a+b+c)/2所以r=13.125

已知三角形ABC的三边长分别为a,b,c,且a,b,c满足

解题思路:先根据非负数的性质求出a、b的值,再根据三角形的三边关系及c为偶数求出c的值即可得出三角形的周长.解题过程:

如图所示,已知三角形ABC的三边长分别为a,b,c,它的三边中位线围成一个新三角形,这个新三角形的三边中位线又

因为小三角形的顶点分别为原三角形的三边中点,故小三角形的三边分别为原三角形三条中位线,所以小三角形的周长=(a+b+c)/2

已知:如图,三角形ABC三边长分别为AB=15,AC=20,BC=25,求三角形ABC的面积

你这道题是勾股定理的单元中的题吗再问:是再答:可是那个图总感觉不标准再问:嗯,超级不标准再答: 再答:不用谢

如图,已知G为三角形ABC的重心,三角形ABC的三边长满足AB>BC>CA,若三角形GAB三角形G

是S1=S2=S3.由于重心是中线的三等分点,可得S1,S2,S3都是△ABC面积的三分之一.详细一点:延长CG交AB于点D,由于CD:GD=3:1所以△CAB与△GAB高线之比为3:1,具有同底AB

若三角形ABC的三边长分别为4,5,7,则三角形ABC的面积是 内切圆半径是

7²=4²+5²-2×4×5×cosA49=16+25-40cosAcosA=-1/5sinA=√1-cos²A=2√6/5所以面积=1/2×4×5×2√6/5

三角形ABC的三边长分别为3.4.5.与三角形ABC相似三角形A1B1C1,的最长边的边...

相似三角形的边长是成正比的,所以可以得出两个长边比和两个短边比相等,设短边为X,则有X:3=15:5及X=9则A1B1C1的最短的边长为9

已知△ABC三边长分别为8,15,17请计算三角形内切圆的面积

因为△ABC三边长分别为8,15,178²+15²=17²所以这个三角形是直角三角形内切圆半径为r=1/2(8+15-17)=3所以内切圆面积=π*3²=9π

已知三角形ABC的三边长分别为18,24,30,则最长边上的中线

∵18=6×3、 24=6×4、 30=6×5, ∴容易得出:18^2+24^2=30^2,∴△ABC是直角三角形,∴最长边是斜边,它上面的中线是它的一半,即为15.∴该三角形最长边上的中线长为15.

已知三角形ABC三边长分别为5'12'13'那么三角形的面积是

从勾股定理A^2+B^2=C^2可得:三角形两条直角边的平方之和等于第三条边的平方,三角形ABC正好满足5²+12²=13²,由此可得这个三角形是直角三角形.三角形面积=

如图,D,E,F分别为三角形ABC三边的中点,则图中平行四边形的个数为多少?

图呢再问:图就是一个大三角形里面还有一个小三角形再答:能照下吗再问:照不了,相机坏了再答:额再答:那我咋说再问: 再答:3再问:求过程再答:利用中点就都可以再答:求出

在三角形ABC中,三边长分别为4,6,8判断三角形的形状

最大边88^2=64>36+16=6^2+4^2所以是锐角三角形