如图三角形ABC是一块直角三角形的余料,角C=90度,AC=6cm,BC=8cm
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 11:54:57
如图,将三角形分为两部分Y轴上半周是一部分,下半轴是一部分分别从A,B两点向X轴作垂线,得到两条高线,长度分别为3,1由AB两点坐标得出直线AB方程4X-Y+7=0,令Y=0,得出AB直线与X轴交点D
证明:∵三角形任意两边之和大于第三边∴AD+BD>AB,AD+DC>AC两式相加得:2AD+BD+DC>AB+AC∵D是BC中点∴2BD=BD+DC∴2AD+2BD>AB+AC∴AD+BD>二分之一(
这道题不是你看错打错就是你没有写完.注意:AI与BI中的“I"重复啦.还有CE中的E又从哪儿跑出来的.
1.
知识点:相似三角形对应边上高的比等于相似比.⑴设正方形边长为X,(80-X)/80=X/120X=48.⑵设垂直于BC的一边为Y,另一边为K,则(80-Y)/80=K/120K=3/2(80-Y),∴
∵PE垂直平分AB,∴PA=PB过P分别做PF⊥CB于F,PG⊥AC于G.四边形GPFC为正方形.∠GPF=90°△APG≌△BPF∠APG=∠BPF所以∠APB=90°所以△ABP为等腰直角三角形
展开上面等式的右边,得|AB|^2+|AC|^2+2*|AB|*|AC|*COS
延长AB到点E,使BE=CN,连接DE∵∠DBE=∠DCN=90°DB=DC∴△DBE≌△DCN∴DE=DN∵易得:∠EDM=∠NDM=60°DM为公共边∴△DME≌△DMN∴MN=EM从而,有:MN
(1)设AC=b,S1=(b/2)²π÷2=4.5π,∴b=6,(2)设BC=a,S2=(a/2)²π÷2=8π,∴a=8,(3)设AB=c,S3=(c/2)²π÷2=1
证明:∵∠CDA=∠BEA=90°∵∠CAD=∠BAE∴△ABE∽△ACD∴AE:AD=AB:AC∴AE:AB=AD:AC又∵∠EAD=∠BAC∴△ADE∽△ACB
1、在△PBC平面上作PM⊥BC,交BC于M,在△PAM平面上作AG⊥PM,交PM于G,AG就是平面PBC的垂线.证明:∵PA⊥平面ABC,∴PA⊥BC,而BC⊥PM,∴BC⊥平面PAM,而AG在PA
(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;
50平方厘米,利用旋转
方法一:cos²(A/2)=(1+cosA)/2,根据余弦定理有cosA=(b²+c²-a²)/2bc,代人cos²(A/2)=(b+c)/2c,得(
设小方格长度为1则根据勾股定理AC²=3²+2²=13AB²=4²+6²=52BC²=1²+8²=65而AC&
连AD、EF,可证△ADE≌△CDF,△ADF≌BDE,所以DE=DF,AE=CF=5,AF=BE=12,由勾股定理可得EF=13,DE=DF=6.5乘根号2,S△DEF=169/8.
根据空间两点的距离公式,AB的距离等于(x1-x2)^2+(y1-y2)^2+(z1-z2)^2的开方.得出AB=3,BC=3√2,AC=3,由此AB^2+AC^2=BC^2.根据勾股定理,△ABC是
1.在三角形ABC中,a^2+b^2=c^2,则三角形ABC不是直角三角形(错)2.若三角形ABC是直角三角形,角C=90°,则a^2+b^2=c^2(对)3.在三角形ABC中,若a^2+b^2=c^
浅谈三角形的费马点法国著名数学家费尔马曾提出关于三角形的一个有趣问题:在三角形所在平面上,求一点,使该点到三角形三个顶点距离之和最小.人们称这个点为“费马点”.这是一个历史名题,近几年仍有不少文献对此
延长CD到E使DE=CD,连接AE可用SAS证明三角形AED与三角形BCD全等,即AE=BC∵AC^2+BC^2=4CD^2∴AC²+AE²=(2DC)²∴三角形AEC为