如图三角形ABC中,D,E,F分别是AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 04:13:05
如图三角形ABC中,D,E,F分别是AB
如图,三角形ABC中,D、E、F分别是BC、CA、AB的中点.图中究竟有多少条中位线?它们是什麼?

/>有三条中位线分别是:DF是AC边上的中位线DE是AB边上的中位线EF是BC边上的中位线如仍有疑惑,欢迎追问.祝:学习进步!

如图,已知三角形ABC中,点D,F在边点D,F在边AB上,点E,G在边AC上,平行于BC的直线DE和FG将三角形ABC的

显然:S△ADE:S△AFG:S△ABC=1:2:3,△ADE∽△AFG∽△ABC.由“相似三角形的面积之比等于其对应边平方之比”性质知:DE²:FG²:BC²=1:2:

如图,在三角形ABC中,点D,E,F分别为BC,AD,CE的中点,且三角形面积4平方厘米,则阴影部分面积为 平方厘米

∵点D、E、F分别为边BC,AD,CE的中点,∴S△ABD=S△ABC、S△BDE=S△ABD、S△CDE=S△ADC、S△BEF=S△BEC,∴S△BEF=S△ABC;∵△ABC的面积是4,∴S△B

已知:如图,三角形ABC中,∠ABC=90°,CD⊥AB于D,BF平分∠ABC交CD于E,交AC于F.

你打错了吧,应该是∠ACB=90°,要不没法做证明:∠ACB=90°∠CFB+∠CBF=90°BF平分∠ABC∠CBF=∠ABF∠ABF+∠BED=90°所以∠BED=∠CFB对顶角,∠CEF=∠CF

已知:如图,三角形ABC中,D、E、F分别为BC、AD、CE的中点,S三角形ABC=4cm²,求S三角形BEF

  (1)因为F是CE的中点,所以△BEF与△BCF等底同高,面积相等.(2)因为D是BC的中点,所以△ABD与△ACD等底同高,面积相等;同理△EBD与△ECD面积相等.所以△A

如图,在三角形abc中,ab=ac,点d.e.f分别是三角形abc三边的中点,求证四边形adef是菱形

等腰三角形,利用中位线原理可得ef=1/2*AB=adde=1/2*AC=afab=ac得到af=dead=ef所以为菱形

如图,在三角形ABC中,D,E,F分别是AB,BC,AC,的中点,AE,DE,EF,将三角形ABC分成四个小三角形

三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了

如图 在三角形abc中,AB=AC,D、E、F分别在AB、BC、CD上

存在.角BDE=180-角B-角BED角FEC=180-角DEF-角BED因为角B=角DEF所以角BDE=角FEC又因为AB=AC所以角B=角C又因为BD=CE所以根据角边角三角形FEC全等于三角形B

如图,D、E、F分别是∠ABC的边BC、AB、AC的中点,那么图中4个小三角形的面积相等,为什么?

证明:连结EF交AD于点O==》AEDF为平行四边形==》面积AED=ADFEF//=1/2CD==》面积ODF=1/2DFC,面积BOE=DCF就有4个小三角形的面积相等

如图1,在三角形ABC中,D.E.F分别是边AB,AC,BC中点,若三角形abc面积为10

是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/

如图,在三角形abc中,d,e,f分别是三边中点,则四边形cdef的周长为

de、ef分别是三角形abc的一条中位线,所以de=fa,fe=db.所以cdef的周长=ac+bc.

如图,△ABC中,点D、E、F分别是AB、BC、CA的中点,求证:三角形ABC∽△DEF

【⊿ABC∽⊿EFD】证法1:∵点D、E、F分别是AB、BC、CA的中点∴DE,DF,EF均是⊿ABC的中位线∴DE=½AC,DF=½BC,EF=½AB即DE/DF/EF

如图,△ABC中,D、E、F分别是边AB、AC、BC中点,连接DE、DF、EF,则图中的相似三角形共有多少对

△ABC-△DEF-△ADE-△CEF-△BDF大致可以看作是5个三角形,各自两两相似,共10对.

如图,在三角形ABC中,AB等于AC,点D、E、F分别在AB、BC、AC边上,且BE等于CF,BD等于CE.求证:三角形

求证:1、∵AB=AC∴∠B=∠C∵BE=CFBD=CE∴△BDE≌△CEF∴DE=EF∴三角形DEF是等腰三角形2、∵∠A=40°∴∠B=∠C=(180°-40°)÷2=70°∴∠BDE+∠BED=

如图,D,E,F是三角形ABC各边的中点,AG垂直BC,垂足

解题思路:梯形解题过程:在△ABC中,D,E,F是三角形ABC各边的中点,AG垂直于BC.垂足为G.求证:四边形DEFG是等腰梯形证明:∵AG⊥BC,F为AC的中点∴FG=1/2AC(直角三角形中斜边

已知;如图;在三角形ABC中,D是BC的中点,E是AD的中点,F是BE延长线与AC交点,DG是三角形BCF

证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC

如图,三角形abc中,ad垂直bc于d,e、f分别是ab、ac的中点.当三角形abc满足什么条件,四边形aedf为菱..

三角形abc为等边三角形.因为点e与点f分别是ab和ac的中点,所以,ae=be=af=bf,又因为三角形abc为等边三角形,且ad垂直于bc,所以∠a=∠b=∠c=60°连接e,d;f,d.此时,a

如图,连接三角形ABC各边中点D,E,F,试证明三角形DEF与三角形ABC相似

证明:因为D、E、F分别是AB、BC、CA的中点∴DE,EF,DF都是△ABC的中位线∴DE/AC=EF/AB=DF/BC=1/2∴△DEF∽△ABC(三边对应成比例的两个三角形相似)再问:请详细些,