如图三,点o是直线ab上的一点,oc od是两条射线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 00:14:27
24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C
OE是∠BOC的平分线.理由如下:∵OD是∠AOC的平分线,∴∠AOD=∠COD,又∠DOE=90°,∴∠COD+∠EOC=90°,∴∠AOD+∠EOB=90°,∴∠EOB=∠EOC,∴OE是∠BOC
(1)连接OC,OE,O和E分别为AB和BD中点,所以OE//AD,即
1OC=2*tBD=4*tOC/BD=1/2AC/OD=1/22OD-AC=BD/2=(4*5/2)/2=5OD=5+ACAC/OD=1/2AC=OD/2OD=5+OD/2OD=10OC=2*5/2=
话说第一题.很简单.相似三角形概念.(1)点A和点F同在圆上,且都对应弦BC,所以角A=角F,CD垂直于AB,那么角DCB=角A,所以角DCB=角F,因此,三角形FCB相似于三角形CBG,所以BC/B
证明:延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH(垂径定理:垂直于弦的直径平分弦且平分弦所对的两条弧)从而∠ACH=∠AHC①又∠AFC=∠AHC(
延长CD交圆O于H点,连接AH∵CD垂直圆O的直径AB即CH垂直圆O的直径AB∴弧AC=弧AH 从而∠ACH=∠AHC 又∠AFC=∠AHC由①②得∠ACH=∠AFC即∠AFC=∠
/>延长CG,交圆O于点M∵AB⊥CD∴弧AC=弧AM∴∠ACG=∠F∵∠CAG=∠FAC∴△ACG∽△AFC∴AC²=AG*AF∵AG=2,GF=6∴AF=8∴AC²=2*8=1
(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x
(1)已知∠AOC=60°,∴∠BOC=120°,又OM平分∠BOC,∠COM=12∠BOC=60°,∴∠CON=∠COM+90°=150°;(2)延长NO,∵∠BOC=120°∴∠AOC=60°,当
∠ACG=∠ABC=∠AFC,∠CAF公共,⊿ACG∽⊿AFC即AC÷AF=AG÷AC故AC^2=AG*AF
D跟E点在那里?我只看到M跟N点按你的意思应该M就是DN就是E吧∵OD、OE分别为∠AOC,∠BOC的平分线.∴∠DOC=1/2∠AOC;∠COE=1/2∠COB则∠DOC+∠COE=1/2∠AOC+
帮你找到原题了,http://www.qiujieda.com/math/115438/真的一模一样以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可
在AB取点E,使AE=AD,易证三角形ADC与三角形AEC全等,可得:角ADC=角AEC三角形CB详细在AB上取点E,使AE=AD,连接CE因为AC平分角BAD所以角EAC=角DAC因为AE=AD,A
连结AD则∠ADC=∠AGCAC=AD,所以∠ACD=∠ADCCF=AF,所以∠ACD=∠CAF所以∠ADC=∠CAF所以∠AGC=∠CAF所以,CG=AC
方法一: ∠CFD = ∠COA = ∠DOA =固定值=> ∠PFE = ∠DOE&nbs
⑴证明:∵OF是∠AOE的平分线∴∠AOF=∠FOE=½∠AOE∵∠COF+∠FOE=∠COE=90°∴∠FOE=90°-∠COF∵∠AOF+∠FOE+∠BOE=∠AOB=180°∴∠BOE