如图一直BP,CP是三角形ABC的外角平分线且相交于点P,求证:AP平分角BAC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:51:26
设O为BC中点,链接AO∵AB²=AC²=(BP+PO)²+AO²=(CP-PO)+AO²∴BP+PO=CP-POPO=(CP-BP)/2又∵AP
以PA为边长作等边△PAD,连结BD∵∠PAD=60°=∠BAC∴∠BAD=∠PAC∵AD=AP,AB=AC∴△ABD≌△APC∴BD=PC=5∵PD=PA=3,PB=4∴∠BPD=90°∵∠APD=
从A向BC作垂线,垂点为D,AB^2=BD²+AD^2AP^2=PD^2+AD^2所以,AB^2-AP^2=BD²-PD^2=(BD+PD)(BD-PD)=BP乘CP
证明:S(ABD):S(ACD)=BD:DC,S(BPD):S(CPD)=BD:DC,相减有S(APB):S(APC)=BD:DC=1.同理,有:S(APB):S(BPC)=AF:FC,S(APC):
证明:作BF⊥CE于F点,CM⊥BD于M点则∠PFB=∠PMC=90°.∵PG是BC的垂直平分线,∴PB=PC.在△PBF和△PCM中,∠PFB=∠PMC∠BPF=∠CPMPB=PC,∴△PBF≌△P
655540由下面化简得(180-角A)/2=角P(180-(360-(180-角A)/2)=角P)
(1)分别过点P作PD⊥AB于D,PE⊥BC于E,PF⊥AC于F.∵BP、CP是△ABC的外角平分线,∴PD=PE,PE=PF,∴PD=PF.∴点P必在∠BAC的平分线上.(2)由于角A=50,则角B
过点P作PM⊥AB的延长线,垂足为M,PQ⊥BC,垂足为QPN⊥AC的延长线,垂足为N∵∠MBP=∠QBP,∠PCQ=∠PCN∴PM=PQ,PQ=PN∴PM=PN∴AP平分∠BAC
从A向BC作垂线,垂点为D,AB^2=BD²+AD^2AP^2=PD^2+AD^2所以,AB^2-AP^2=BD²-PD^2=(BD+PD)(BD-PD)=BP乘CP7月Y4
如图,过点A作BC的垂线,垂足为D已知AB=AC则点D为BC中点所以,BD=CD由勾股定理有:AB^2=AD^2+BD^2;AP^2=AD^2+PD^2所以,AB^2-AP^2=(AD^2+BD^2)
∵AP+CP=AC=5,∴要使AP+BP+CP取得最小值,只需要BP取得最小值就可以了.显然,当BP是△ABC的高时,BP最小.下面证明这一结论:在AC上任取一个不与P重合的点Q,则△BPQ是一个以B
不是连接AP因为BP平分
相等再答:没让写证明就别写再问:让写证明了。。。再答:设角A为x度或直接使用。我没空呃作业还有不少。。。
证明:在AB上截取AD=AC∵∠DAP=∠CAP,AP=AP,AD=AC∴△ADP≌△ACP∴CD=CP在△BDP中根据两边之差小于第三边BP-DP
在AB上取一点E,使得AE=AC,连接EP,那么在三角形AEP和三角形ACP中AP=AC角EAP=角CAPAP=AP三角形AEP和三角形ACP全等.角ACP=角AEP为锐角,那么角BEP为钝角,所以B
三角形两边之和大于第三边AP+BP>ABAP+CP>ACBP+CP>BC然后上述三式加一加两边同除以2等证再问:具体怎么做?再答:∵P为△ABC内任意一点连接AP,BP,CP∴得△ABP,ACP,CB
根据三角形两边之和大于第三边定理可得AP+BP>ABBP+CP>BCCP+AP>AC所以2(AP+BP+CP)>AB+BC+CA即AP+BP+CP>0.5(AB+BC+CA).
应该是证明AD+BE+CF>1/2(AB+BC+CA)在△PAF中,PA+PF>AF在△PBF中,PB+PF>BF在△PBD中,PB+PD>BD在△PCD中,PD+PC>CD在△PCE中,PC+PE>