如图一,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 20:48:59
PE+PD最小就是BE的长,BE就是正方形的边长,∴S正方形ABCD=25.
解析:∵在四棱锥P-ABCD中,底面ABCD是边长为a的正方形,侧面PAD⊥底面ABCD过P作PG⊥AD∴PG⊥底面ABCD∵PA=PD=(根号2/2)AD,E,F分别为PC,BD的中点∴PA=PD=
因为pd垂直abcd,所以bc垂直pcd,所以bc垂直de因为e为pc中点且pd等于dc,所以de垂直pc所以de垂直pbc所以bde垂直pbc请采纳答案,支持我一下.
证明(1)连接AC交BD于O,连接OE∵ABCD是正方形∴OC=OA∵E是PC中点∴EC=EP∴OE||PA∵OE在面EDB内∴PA//平面EDB(2)∵ABCD是正方形∴BC⊥CD∵PD⊥底面ABC
(1)证明:连结AC、AC交BD于O,连结EO, ∵底面ABCD是正方形,∴点O是AC的中点,在△PAC中,EO是中位线, ∴PA∥EO,而平面EDB且平面EDB,所以,PA∥平面
四点共圆有三个性质:(1)共圆的四个点所连成同侧共底的两个三角形的顶角相等;(2)圆内接四边形的对角互补;(3)圆内接四边形的外角等于内对角.以上性质可以根据圆周角等于它所对弧的度数的一半进行证明.此
正方形ABCD在平面直角坐标系中的位置如图,在正方形内部找点P,使△PAB,△五个.(0,0),(t-1,0),(1-t,0)(0,1-t),(0,t-1再问:答案是9
设BP与AE的交点为O∵AB=BC,∠ABE=∠CBE=45°,BE=BE∴△ABE≌△CBE∴∠BAE=∠BCE∵P是AD中点易证:△ABP≌△DCP∴∠ABP=∠DCP∵∠BCE+∠DCP=90°
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
∵∴⊥‖‖⊿△∽≌→∠°∟⌒⊙⊕ ½ ‰º¹²³^2√SAS →
1,bp方=ab*bf再问:再答:AB/BP=(AB-BP)/CE整理上式得BP方=AB*(BP-CE)综上,BF=BP-CE再问:再答:2,CE=BP+BF方法与一相同
/>由ABCD是正方形可知AB=BC=CD=AD取BC中点H,连接AH,交BE于点N,则AF=CH=AD又由ABCD是正方形可知AF∥CH,所以AFCH是平行四边形,所以AH∥CF,因为BH=HC,所
PC=QD,AQ=PB,12-3t=t,t=3,AQ=3,AP=9,PB=3QA=DP,t=12*3-3t,t=9S-PQC=36,PC=6,t=10,Q在AB上,P在DC上,PC=6,QB=2,或假
设正方形中心为O,AEC面中AC既垂直于DB(正方形对角线),又垂直于PD(PD与整个ABCD面垂直);且PD、DB均属于面PDB且相较于D点由面面垂直定理得证
igxiong008是对的~
∵P点在平面ABCD内的射影为A∴PA⊥平面ABCD则PA⊥CD∵四边形ABCD为正方形∴CD⊥AD则CD⊥平面PAD∵CD∈平面PCD∴平面PCD⊥平面PAD则二面角C-PD-A为直角
∵线段D1Q与OP互相平分,且MQ=λMN,∴Q∈MN,∴只有当四边形D1PQO是平行四边时,才满足题意,此时有P为A1D1的中点,Q与M重合,或P为C1D1的中点,Q与N重合,此时λ=0或1故选C.
设P在AB上,Q在CD上,M在BC上,N在AD上,且PQ=MN.过A作AE‖PQ交CD于E,过D作DF‖MN交BC于F,∴AE=PQ,DF=MN,得AE=DF,由AD=CD,∴△ADE≌△DCF(H,
本题用旋转法可以巧解.将△PBC绕B点逆时针旋转90°至BC与AB重合,得到一个新的△AQB,可知:BQ=PB=2,QA=PC=3,∠ABQ=∠PBC,由于∠PBC+∠ABP=90°,所以∠PBQ=∠
图你自己画吧,由P向AB,BC,CD,AD作垂线,垂点分别为S,R,Q,T.由定理知,PQ/BC=EQ/EC,PQ/FD=CQ/CD,又因为CD=BC=2FD2EC,EQ=EC-CQ,化简可得4EC=