如图一,△abc中,de∥bc分别交
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 23:07:45
∵DE∥AC,EF∥BC,所以四边形EFCD是平行四边形.设ED=x,则AC=4+x.∵AD平分∠BAC,由三角形内角平分线定理,得出ABAC=BDDC=154+x又DECA=BDBC.∴xx+4=1
做A到BC的高,交DE于M,到BC于N.因为DE‖BC,因此DE:BC=AM:AN.S(ADE)=S(DBCE)S(ABC)=S(ADE)+S(DBCE)=2*S(ADE)S(ADE)=DE*AM/2
∵EF//DC∴AF/AD=AE/EC∵DE//BC∴AD/AB=AE/AC∴AF/AD=AD/AB∴AD²=AB×AF
证明:延迟CD交AB于点F∵AD平分∠BAC∴∠BAD=∠CAD∵AD⊥CF∴∠ADF=∠ADC∵∠BAD=∠CADAD=AD∠ADF=∠ADC∴△ADF≌△ADC(ASA)∴AF=AC∴BF=AB-
∵DE∥BC,∴△ADE∽△ABC,∵DE平分△ABC的面积,∴△ADE和△ABC的面积比为1:2,∴相似比为是1:2,∴C△ADE:C△ABC=1:2;∵C△ABC=14cm,∴△ADE的周长为72
∵DE∥BC,∴△ADE∽△ABC,∵梯形DBCE面积是△ADE面积的3倍,∴S△ADE:S△ABC=1:4,∴DE:BC=1:2,∵BC=6,∴DE=3,故答案为3.
兄台题目错了.检查一下题目,我可以做.再问:把第二个BC改为BF再答:AE:EG:GC=AD:DF:BF=1:2:3(平行线等分线定理)DE:BC=AD:AB=1:6,FH:BC=DF:BD=2:5,
证明:因为AD平分角BAC,所以角EAD=角DAF,因为DE∥AC,所以角EDA=角DAF,所以角EAD=角EDA,所以AE=ED又因为EF∥BC,DE∥AC,所以,四边形EFCD是平行四边形,所以E
证明:∵DE∥BC,∴DE∥FC,∴∠AED=∠C.又∵EF∥AB,∴EF∥AD,∴∠A=∠FEC.∴△ADE∽△EFC.
由题意可知△ADE∽△ABC,∴DE/BC=√(S△ADE/S△ABC)△ADE的面积=梯形BCED的面积故S△ADE/S△ABC=1/2故DE/BC=√2/2
∵S△ADE:S四边形BCED=1:2,S△ABC=S△ADE+S四边形DBCE,∴S△ADE:S△ABC=1:3,又∵DE∥BC,∴△ADE∽△ABC,∴S△ADE:S△ABC=(DEBC)2,又∵
∵AB=BC,BD是∠ABC的平分线∴D为AC的中点∵DE‖BC∴E为AB的中点∴DE=AB/2=6
解题思路:根据相似三角形性质解答。解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/
因为DE//BC,BE是角ABC的平分线,所以三角形BDE是等腰三角形,所以BD=DE.因为DE//BC,所以三角形ABC相似于三角形ADE,所以AD/AB=DE/BC,即AD/(AD+BD)=DE/
作FH//AB交BC于H点.∵DE//GF//BC,FH//AB∴∠ADE=∠ABC=∠FHC,∠AED=∠FCH,FH=GB=AD.∴⊿ADE≌⊿FHC∴AE=CF再问:FH=GB=AD是怎么得到的
(1)∵BD是∠ABC的平分线,∴∠ABD=∠CBD=12∠ABC,∵DE∥BC,∴∠EDB=∠DBC=12∠ABC=40°.(2)∵AB=BC,BD是∠ABC的平分线,∴D为AC的中点,∵DE∥BC
答:证明:∵AE=EB,AD=DC,∴ED∥BC.∵点F在BC延长线上,∴ED∥CF.∵AD=DC,ED=DE,∠ADE=∠EDC,∴△ADE≌△CDE.∴∠A=∠ECD.∵∠CDF=∠A,∴∠CDF