如图rt三角形中,∠a=90°,ab=6

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:26:43
如图rt三角形中,∠a=90°,ab=6
如图,在Rt三角形ABC 中,∠C=90°,CB=CA=a,求AB的长 不能用勾股定理

求解什么再答:噢噢看错了再答:能不能用高中方法?再问:要初中的…不能用勾股定理╰(*´︶`*)╯再答:稍等,我想想再答:我在发挥全班智慧再答:这也可以😱再答:还没帮你解决呢再

如图Rt三角形ABC中角A=90度

在直角三角形ABC中,AB=6;BC=10;所以AC=8因为BC的垂直平分线与AC相交与D,所以BD=DC故三角形的周长=AD+BD+AB=AD+DC+AB=AC+AB=14

相似三角形:如图,在等腰RT三角形ABC中,AB=1,∠A=90°

因为等腰RT三角形ABC中,AB=1,∠A=90°,∠C=45度故:AC=AB=1,∠ABE+∠AEB=90度因为点E为腰AC的中点,故:AE=EC=1/2AC=1/2因为EF⊥BE故:∠CEF+∠A

如图,RT三角形ABC中,角C=90,

证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故

如图,在Rt三角形ABC中,∠C=90°,AB=5,三角形ABC的周长为12,求三角形ABC的面积

设两条直角边为a,b则:a^2+b^2=25a+b=7所以a^2+b^2+2ab=4925+2ab=492ab=241/2ab=6所以△ABC的面积=6

如图,在Rt三角形ABC中,∠C=90°,b+c=24 角A-角B=30°,求a、b、c

∵Rt△ABC中,∠C=90°∴∠A+∠B=90°∵∠A-∠B=30°∴∠A=60°,∠B=30°根据特殊直角三角形的性质,得:b=(1/2)c,a=(√3)b∵b+c=24∴(1/2)c+c=24c

已知:如图,在RT三角形ABC中,∠A=90°,AB=BD,DE⊥BC与AC交于E,求证:AE=DE

连BE∵∠A=90DE⊥BC∠A=∠EDB=90∵∠A=90∴△ABE为RT△∵∠EDB=90∴△DBE为RT△在RT△ABE与RT△DBE中BE=BEAB=DB∴RT△ABE≌RT△DBE(HL)∴

如图,在Rt三角形ABC中,∠ACB=90°,∠A<∠B,沿三角形ABC的中线CM将三角形CMA折叠,使点A落在点D处,

∵M是AB的中点,∠ACB=90°∴CM=AM∴∠A=∠ACM∵折叠∴∠ACM=∠DCM∵CD⊥AB∴∠A+∠ACM+∠DCM=90°∴3∠A=90°∴∠A=30°∴BC:AC=1:根号3

如图在RT三角形ABC中,∠C=90,∠A=30,BC和AB的关系

作角ABD=30度,D在AB上则三角形ACD是等腰三角形所以AD=CD角ADC=180-30-30=120度所以角CDB=60度而角B=180-90-30=60度素三角形BCD是等边三角形所以CD=B

如图,在RT三角形ABC中,∠C=90°,M为AB边上中点,将RT三角形ABC绕点M旋转,使点C与点A重合得到三角形DE

分析:(1)根据旋转的性质:旋转前后的图形全等,得到对应角和对应边之间的关系.(2)根据旋转的性质用同一个未知数表示出有关的边,根据勾股定理列方程计算.(1)∵Rt△ABC绕点M旋转得△DEA,∴△A

如图,在RT三角形abc中,∠c=90°,BC=3,AC=4,⊙o为RT三角形abc的内切圆(1)求RT△ABC的内切圆

确认D、E是切点.半径r.①∵四边形CDOF为正方形{切线定义,四个角是直角},r=CD=CF;∵5=AB{勾三股四玄五}=AF+BD{切线长定理}=(4-r)+(3-r)=7-2r,∴r=1.②移动

如图,在Rt三角形ABC中,∠C=90°,∠A=30°,AB+BC=12cm,求AB和BC的长

BC=ABsin30°AB+BC=AB(1+sin30°)=1.5AB=12AB=8cmBC=4cm

已知:如图,在RT三角形ABC中,∠BAC=90°,三角形BCD、三角都ACE、三角形ABF均为等边三角形

若等边三角形的边长为a,则其面积=√3a²/4∴S三角形ACE+S三角形ABF=√3AC²/4+√3AB²/4=√3/4(AC²+AB²)√3/4·B

已知:如图,在Rt三角形abc中,∠acb=Rt∠,∠a=30°,cd⊥ab于点d,求证三角形abc相似三角形cdb

因为CD⊥AB所以∠CDB=Rt∠所以∠ACB=∠CBD又因为∠∠B=B所以△ABC相似于△CBD(本题于∠A=30°无关)

如图,在RT三角形ABC中,∠A=90°DE为BC的垂直平分线,BE²=AC²+AE²

连接EC因为DE是BC的垂直平分线,所以BE=EC在三角形AEC中EC^2=AC^2+AE^2所以BE^2=AC^2+AE^2

如图,在rt三角形abc中,∠c=90°,de垂直平分ab且∠cbe:∠abe=2:1那么∠a=

AD=BD,共用一个边DE,∠ADE=∠BDE=90°,得出三角形ADE与三角形BDE相同,所以∠A=∠ABE,所以4∠A=90°,∠=15°.

相似三角形如图在RT△ABC中,∠ACB=90°,△ABC外作一个RT△BCD,使∠BDC=90°,设AB=a,BC=b

∵∠ACB=∠BDC=90°∴应该有两种可能情况使⊿ABC∽⊿BDC(1)当∠DCB=∠ABC时AB/BC=BC/CD∴a/b=b/c即b²=ac(2)当∠ABC=∠BDC时AC/CD=AB