如图rt三角形abc中角bac等于90度,将三角形abc
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:53:33
根据三角形相似可以求出BC=15×15/9=25,AC=20 过E点作EF⊥AC于E,则有AF=EF 再根据相似,有(20/12x)²=x²+(20-x)² 解得,
这道题不是你看错打错就是你没有写完.注意:AI与BI中的“I"重复啦.还有CE中的E又从哪儿跑出来的.
如图,⊿EAB≌⊿EGB(AAS) EG=EA AB=GB ∴⊿FAB≌⊿FGB(SAS).GF=FA∠CAD=90&am
因为 AD平分角BAC 所以 ∠cad=∠dae 因为 
等腰直角三角形AN=BM,AD=BD,NAD=MBD=45所以NAD全等MBDDN=DMNDM=NDA+ADM=ADM+MDB=90
因为角BAC是90,角B=90-角C.角DAC=90-角BAD=90-2*角C.角ADB=角DAC+角C=90-2*角C+角C=90-角C=角B.因此三角形ABD是等腰三角形.AB=AD
连od,oa=od,角oad=角oda,又因为角cad=角oad,所以角cad=角ado,od平行ac,得三角形bdo相似三角形bca,od/ac=ob/ab,可求ab=20,设半径为x得x/12=2
证明:因∠CAD=∠BAE,∠C=∠ABE=90°故△ACD∽△ABE故AC/AB=CD/BE即AB*CD=AC*BE因∠EBF+∠ABC=90°=∠ABC+∠BAC故∠EBF=∠BAC又∠F=∠C故
如图,过A做线段AM,使得AM=AB=AC,且角DAM=角DAC,则角EAM=角EAB,三角形ABE与三角形AME全等,三角形AMD与三角形ACD全等.从而角AMD=角ACD=45°,同理角AME=4
连接AO∵△ABC是等腰直角三角形,O是BC的中点∴∠BAO=∠B=45°,AO=BO∵BM=AN∴△BOM≌△AON∴OM=ON∠BOM=∠AON∵∠BOM+∠AOM=90°∴∠AON+∠AOM=9
证明:连结DM∵AD=BD,M为AB中点∴DM⊥AB∴∠DME+∠AME=90°∵ME⊥AC∴∠A+∠AME=90°∴∠DME=∠A又∵∠DEM=∠C=90°∴△MDE∽△ABC∴DE:BC=ME:A
此题无图,E点也不明确.设E为AD与BC的交点,则:(1)∵AD为∠A的平分线∴∠BAE=∠ABC=30°∴AE=BE(2)∵在△AEC中∠C=90,∠EAC=30∴CE=1/2AE∵BD∥AC∴∠D
【题中“∠ABC=135°”更改为“∠ADC=135°.】BD⊥DC.◆证法1:∵∠ADC+∠ABC=180°.∴点A,B,C,D四点在同一个圆上.故∠BDC=∠BAC=90°,即BD⊥DC.◆证法2
半径r,AO:AB=OE:BC(4+r):(4+2r)=r:6r=-3舍去或r=4元0面积=16π
解题思路:数量关系为:BE=EC,位置关系是:BE⊥EC;利用直角三角形斜边上的中线等于斜边的一半,以及等腰直角三角形的性质,即可证得:△EAB≌△EDC即可证明.解题过程:附件
(1)相等,因为直角三角形斜边中线等于斜边一半,故AD=1/2BC=CD=DB(2)等腰Rt△DMN连接AD,∵AN=BM,角NAD=角DBM=45°,AD=BD∴△NAD全等于△MBD(SAS)∴D
解题思路:(1)∵AD⊥BC∴∠DAC+∠C=90度∵∠BAC=90°∴∠BAF=∠C∵OE⊥OB∴∠BOA+∠COE=90°∵∠BOA+∠ABF=90°∴∠ABF=∠COE∴△ABF∽△COE。(2
求的应该是BN+MN的最小值吧 过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时OB'=MN+NB'=MN+BN的
解题思路:请把图发过来解题过程:请把图发过来最终答案:略