如图p为三角形abc 的边ab上一点ae垂直于pc于e,q为ab的中点求证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:16:30
在BC上任选一点P(随便)过P作AB的垂线PE,(E为垂足,在AB上)过P作AC的垂线PF,(F为垂足,在AC上)因为AB=AC,角BAC=90度,所以角B=角C=45度因为PE垂直于AB,所以角BE
证明的是小于等于4分之5吧因为,∠1=∠2=∠3则,△ABC∽△EBD∽△ADC相似比=周长的比=m:m1:m2设,AC/BC=k则,m2/m=AC/BC=DC/AC=k解得,DC=kAC又,DC=B
答案是肯定的!既然P点在AB、BC的垂直平分线上,那么PA=PB=PC.因而P点必在AC的垂直平分线上.P点是△ABC的外心——外接圆的圆心.
因为PQ⊥AB所以∠QPB=90°因为∠C=90所以∠C=∠QPB,又∠B为公共角所以△BPQ∽△BCA所以S△BPQ/S△BCA=BP²/BC²即1/4=2²/BC
证明:如图.连接PE,PD,QE,QD,PQ∵AD,CE分别是△ABC的高∴∠BDF=∠ADC=∠AEC=∠BEF=90°∴△ADC,△BDF,△AEC,△BEF都是直角三角形∵点Q是AC的中点∴QE
选C如图所示,作AB的垂直平分线,①△ABC的外心P1为满足条件的一个点,②以点C为圆心,以AC长为半径画圆,P2、P3为满足条件的点,③分别以点A、B为圆心,以AC长为半径画圆,P4为满足条件的点,
作法:作BAC的角平分线交BC边于点P,则点P就是所要确定的点.因为角平分线的性质告诉我们:角平分线上的任意一点到角的两边的距离相等,所以要作角平分线,而不是作线段的垂直平分线.
过点A作高AD垂直BC于点D在RT△ABD中AB²=AD²+BD²【勾股定理】在RT△APD中AP²=AD²+PD²【勾股定理】AB&sup
答案来了哦,你看看吧.你需要去截图的网址中看完整个解答过程哦,再问:能帮忙发过来吗再答:我发链接给你的话系统会直接吞掉的,你输链接进去就可以看完了,很方便的。
连AP可证△AEP与PFC全等PE=PF
解题思路:根据题意,由三角形相似的知识可求,根据对应线段成比例解题过程:
对于BC上任意一点R来说,△PQR的周长中,PQ的长度始终没变,因此问题等价于在BC上求一点R,使PR+QR最小,这和那个课本上的建造自来水厂的问题一模一样.作点P关于BC的对称点P',连结P'Q交B
有7个,正三角形的中心是一个,A关于BC为轴的对称点是一个,B关于AC为轴的对称点是一个,C关于AB为轴的对称点是一个.延长AH,()AH是BC边上的高,再答:再答:延长AH到D是的AD等于三角形边长
当DE平行AB时∠DCA=∠CAB又因为∠DCA=∠PCA所以PC=PA同理可证PC=PB即P为AB中点AP=5DE=CD+CE=2PC,即求PC最大值最小值PC最大时为8(P在A点)最小时4.8(P
在AB上作点E,使得AE=AC,连PE则三角形AEP全等于三角形ACP所以PC=PE在三角形PEB中,由三角形性质得PB-PE小于BEBE=AB-AE=AB-AC所以AB-AC>PB-PE即AB-AC
证明:P是BC的中点所以BP=CP,因为AB=AC,所以AP⊥BC(三线合一)在直角三角形ABP中,由勾股定理,得,AB²-AP²=BP²因为BP=PC所以AB的平方—A
作F关于BC的对称点M连EM交BC于P,即为所求作
证明:∵AD⊥BC,∴∠AFB=∠AFC=90°,又∵AB=AC,AF=AF,∴Rt△ABF≌Rt△ACF,∴∠BAP=∠CAP,又∵AB=AC,AP=AP,∴△ABP≌△ACP,∴PB=PC.
证明:在AB上取点E使AE=AC,连PE易证△AEP≌△ACP所以,PE=PC在△BPE中,有BP-PE
作EF//CD交AB于F,则BF:FD=1:2(BE=1/3BC),故AD:FD=3:2(D为三角形ABC边AB的中点),即AP:PE=3:2.,所以S三角形APC=3/5(S三角形AEC)又S三角形