如图pa切圆o于点a
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:15:11
证明:连接OA,OM则OA=OM=半径∴∠OAM=∠OMA∵M为弧BC的中点∴OM⊥BC【平分弦所对的一条弧的直径,垂直平分弦】∴∠OMA+∠CDM=90º∵PA是圆的切线∴OA⊥PA∴∠O
链接OB、OA,由于OB、OA为圆半径所以OB=OA因为PA,PB切圆O于点A,所以PA⊥OA,PB⊥OB,所以∠PBO=∠PAO=90°因为PA⊥PB于点P,所以∠APB=90°=∠PBO=∠PAO
证明:1、∵PA,PB切圆O于点A,B∴PA=PB,又∵CD切圆O于点E,∴CA=CEDB=DE∴三角形PCD的周长=PC+PD+CD=PC+PD+CE+DE=PC+PD+CA+BD=PA+PB=2P
连接AO与BO则AOBP是正方形S=16S扇形AOB=4πS影=16-4π
由切圆可知,oa,ob分别垂直pa,pb,圆半径=4,面积=1/4兀*4*4-1/2*4*4=4兀-8
(1)连接OB、OP△POA和△POB中PA=PB,PO=PO,AO=BO(都是半径)所以△POA≌△POB,∠PAO=∠PBO因为PA为切线,所以∠PAO=90因此,∠POB=90.PB为圆切线(2
圆心为O连接OAOMOM⊥BCOA⊥PA∠OAM=∠OMA∠OAM+∠PAM=90°∠OMA+∠CDM=90°∠OMA+∠ADP=90°∠ADP=∠PAMPA=PD
连接AC,OC∵AB为⊙O直径∴AC⊥BC(严谨一些的话,要先∠ACB=90°再垂直)∵BC//OP∴OP⊥AC.(其实这里要写上∵BC//OP,∠BCA=90°,导出内错角也为90°,再OP⊥AC)
连接OA,OC,OE.∵A和E均为切点.∴∠OAC=∠OEC=90°;又OA=OE,OC=OC.∴Rt⊿OAC≌Rt⊿OEC(HL),AC=EC.同理可证:BD=ED,PA=PB.∴PC+CD+PD=
根据圆外一点至圆作二切线段相等的性质,QA=QE,DE=DB,∴△PQD周长=PQ+QD+PD=PQ+QA+DB+PD=PA+PB=2PA=10cm.
(1)证明:连接OA,∵PD切⊙O于A,∴OA⊥PD,∵CD⊥PD,∴∠PAO=∠PDC=90°,∴OA∥CD,∴∠OAC=∠ACD,在⊙O中,OA=OC,∴∠OAC=∠OCA,∴∠ACD=∠OCA,
由PA是切线,OA⊥PA,OA=1/2OP(OA=OB=PB=1,OP=2)得:∠OPA=30°,那么∠AOP=60°由∠AOD=60°得:∠COD=60°做DM⊥OC,在Rt△DOM中:∠ODM=3
圆心为O连结OP,OB.可得因为是圆的半径,所以OA=OB已知,PA=PB,且共用边OP.得出,三角OPA全等于,三角OPB,推出,角OBP是90度,推出PB是圆O的切线.
PB=PA=12由切线性质知,EA=EM,FB=FM所以三角形PEF的周长=PE+PF+EF=PE+PF+EM+FM=(PE+EA)+(PF+FB)=PA+PB=24
周长25.02面积37.58再问:有过程么?
因为:圆半径相等所以:角ODA=角OAD因为:OD垂直BC所以:角ODA+角BFD=90因为:PA为圆切线所以:角OAD+角DAP=90所以:角BFD=角DAP所以:角AFP=角DAP所以:PA=PF
角cod=60度过d做co垂线勾股定理可求7的平方根再问:答案给我再答:
PA²=PB•(PB+2R)R=3