如图o是ab的中点角a等于角b
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 13:30:06
证明:∵DA平分∠EDC∴∠EDA=∠CDA∵∠EDA是圆内接四边形ACBD中∠ACB所对应的外角∴∠ACB=∠EDA∵∠CDA、∠ABC所对应圆弧都为劣弧AC∴∠ABC=∠CDA∴∠ACB=∠ABC
证明:【1】∵AB是⊙O的切线∴∠ABO=90°∵∠A=30°∴∠AOB=60°∵OB=OC∴∠OCB=∠OBC=1/2∠AOB=30º∴∠A=∠OCB∴AB=BC【2】连接OD∵D为弧BC
角ABC是一条直线,不能求度数吧再答:我没回答啊!再答:只能是180度
全等,∠A=∠B,OA=OB,∠AOC=∠BOD(对顶角相等),ASA,所以全等
证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?
1.连接OC,则∠AOC=60°∵OC=OB∴△AOC是等边三角形同理△BOC是等边三角形∴AOBC是菱形.
∵∠AOB=120°,弧AC=弧BC,∴∠COA=∠COB=60°,∵OA=OC=OB,∴ΔOAC与ΔOBC是等边三角形,∴OA=OB=AC=BC,∴四边形OACB是菱形.
解题思路:连OC,由C是弧的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱
∵C为弧AB中点∴弧AC=弧BC∴∠AOC=∠BOC=½∠AOB=60°,AC=BC又∵AO=BO=CO∴△AOC,△BOC为等边三角形∴∠ACO=∠BOC,∠AOC=∠BCO∴AC∥OB,
题目中C是短弧AB的中点证明:因为C是弧AB的中点所以弧AC=弧BC所以AC=BC∠AOC=∠COB(在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦中,有一组量相等,那么它们所对应的其余各组量都
∵AB∥CE,∴弧AC=弧BE,∵∠AOC=∠BOD,∴弧AC=弧BD,∴弧DB=弧EB,即点B是弧DE的中点.
证明:∵OA=OB,OC=OD∴∠AMO=∠ANO=90°AM=CNAO=CO∵∠AMN=∠OMN+∠AMO=∠OMN+90°=∠ONM+90°=∠ONM+∠ANO=∠CNM∴∠OMN=∠ONM∴OM
∵C为AB的中点∴AC=BC又∵CD=BE,AD=CE∴△ADC≌△CEB∴∠ACD=∠B=58°,∠BCE=∠A=72°∴∠DCE=180°-∠ACD-∠BCE=180°-58°-72°=50°
设半径r,则BD=DC=rAB是切线,AB垂直BD,A=30,所以BOA=60,而BD=DC,所以OBC=OCB=30,D为弧BC中点,所以BD=DC,连接OD,所以BOD=DOC=60,所以BO平行
连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形
证明:连OC,如图,∵C是弧AB的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.
连接OD,∵AD是⊙O的切线,∴OD⊥AC,过O作OE⊥AB,垂足为E,又AC=AB,∴∠∠C=∠B,点O是BC的中点,∴OC=OB,∴⊿OCD≌⊿OBE﹙AAS﹚,∴OE=OD,又OE⊥AB,∴AB
M是AB的中点吧,如果是这样的话,因为AB=DC,AD//BC,所以四边形ABD是等腰梯形,所以∠B=∠C=45度.过A点作AP的垂线交BC于P点.则AP=MN,△APB是等腰直角三角形,则AP=BP
【补短法:即把AB和CD接成一条线段,再证其和与AD相等即可.】证明:延长DM,交AB的延长线于E.∵∠EBM=∠C=90度;BM=CM;∠BME=∠CMD.∴⊿EBM≌⊿DCM(ASA),EM=DM