如图mn是圆o的直径mn 2点a在圆o上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:10:32
首先,“如图”两字很多余其次,很明显,这是高中数学的典型问题(怀念~)最后,哥几乎是完全忘了,短期内解不出来(不好意思呵)另外再说一句,会这题的绝大多数这时候还在为学业努力奋斗,没有时间上网,所以你这
作OG⊥MN与G,OG=√(OM^2-MG^2)=3,△OGH∽△AFH,则h1/OG= HA/ OH,△OGH∽△BEH,则h2/OG= HB /OH,所以h
270°,连接OA,OB,OC,形成四个等腰三角形AOM,AOB,BOC,CON,角OAM=(180-角AOM)/2,角OAB=(180-角AOB)/2,角BCO=(180-角BOC)/2,角OCN=
证明:△OEP全等于△OFPPE=PF由垂径定理得MP=NP∴ME=NF由垂径定理得弧AM=弧AN△OEP全等于△OFP∴∠COA=∠DOA∴弧AC=弧AD∴弧MC=弧ND
证明:(1)连结OM、ON.则OM=ON有oe=of,得∠peo=∠pfo,又oa⊥MN,所以,三角形oep全等三角形ofp所以pe=pf又mp=np得me=nf(2)有(1)得me=nf又oe=of
h1+h2=圆心O到MN的距离的2倍,利用垂径定理,得到这个距离是3,则h1+h2=6再问:“h1+h2=圆心O到MN的距离的2倍”这是为什么?再答:可以将弦MN平移到其一个顶点与点A(或者B)重合。
(1)∵MN是⊙O的直径,点A是弧MN的中点,∴∠AOM=14×360°=90°,∴∠ACO+∠CAO=90°,∵∠ACO=2∠CAO,∴3∠CAO=90°,解得∠CAO=30°;(2)过点O作OD⊥
作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′,OB,∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵
由题意可知,角AON=60度,角BON=30度.以MN为对称轴,B的对称点B',连接BB',如图,连接AB',B'O.P是直径MN上的一个动点,则点PA+PB的最小值就
∵0E=0F,∴△OEF是等腰△又AB⊥MN∴OP垂直平分底边EF,∴PF=PE∵MN是弦,AB是直径,且AB⊥MN∴AB垂直平分MN,即:pM=pNPm一pE=PN一PFME=FN再答:垂直于弦的直
在圆上取一点B',使弧B'N=弧BN,连接AB',交MN于P',连接PB'\x0d显然B,B'点关于MN对称,所以PB=PB'\x0d而在三角形APB'中,PA+PB'>AP'\x0d所以:PA+PB
作关A关于直径MN的对称点C,则PA=PC所以PA+PB=PC+PB由于两点之间线段最短,所以B、P、C共线时PA+PB达到最小值.
1.作B点关于AN的对称点C,C点在圆上,所以AC=PA+PB的最小值,AC所对的圆心角是90°,半径=1,所以AC=根号22.3圈3.题意应该是把圆周分成1:3,若是面积的话就很麻烦了,所以圆周角是
过A作关于直线MN的对称点A′,连接A′B,由轴对称的性质可知A′B即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴AN=A′N,∵∠AMN=30°,∴∠A′ON=60°
延长po交圆于c,连接mc显然pon相似于pmc所以po/pm=pn/pc设ab=x则po=x/2pc=xpm=9带入x=3根下10
作B关于MN的对称点F,连OB,OA,根据勾股定理得:OD=8,OC=6,CD=14,连AF与MN相交于一点即为符合题意的P点,过F作MN的平等线交AC的延长线于H,则直角三角形AFH中,FH=DC=
设AB、NM交于H,作OD⊥MN于D,连接OM.∵AB是⊙O的直径,且AB=10,弦MN的长为8,∴DN=DM=4,∵MO=5,∴OD=3.∵BE⊥MN,AF⊥MN,OD⊥MN,∴BE∥OD∥AF,∴
35度连接PN,设角NPQ=X,角NMQ=X(同弧所对圆周角)角K+X+90+40+X=180(90是因为直径对的圆周角,180是三角形KPM的内角和)求得X=15,所以角PMN=55,余角PNM=3
作AA'⊥MN交圆O于A',连接BA'交MN与P,则此处PA+PB=BA'最小;因B是AN弧的中点,所以BNA'弧等于ANA'弧所对圆心角的¾倍=(π/3)*(3/4)=π/4;又圆O的半径