如图l1垂直l2,垂足为点O,A,B是直线l1上的两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 11:11:21
过点B作BF∥l1,∵l1∥l2,∴BF∥l1∥l2,∵AB⊥l1,∠1=45°,∴∠OBF=90°,∠FBE=∠1=45°,∴∠2=∠OBF+∠FBE=90°+45°=135°.故答案为:135°.
1:Y=AX+B,将A,B代入0=4a+b-3/2=3a+b解得a=3/2,b=-6L2表达式为:y=(3/2)*X-62:Y=-3X+3;Y=(3/2)X-6两直线交点C为:(2,-3)D为(1,0
相等因为...我也不知道,反正题都是这样的
(1)L1斜率为根3,角BAC=60度角OAB=角OBC=120度角OBA=120度-90度=30度角BOA=30度OB为:y=[(根3)/3]*xOB与L1方程联立,得B点坐标(根3,1)代入L2,
连接OA,过点O作OD⊥AB,∵AB=12,∴AD=12AB=12×12=6,∵相邻两条平行线之间的距离均为4,∴OD=8,在Rt△AOD中,∵AD=6,OD=8,∴OA=AD2+OD2=62+82=
过点B作BD∥l1,则BD∥l2,∴∠ABD=∠AOF=90°,∠1=∠EBD=43°,∴∠2=∠ABD+∠EBD=133°.故答案为:133.
设该函数为Y=KX+B依题意得,0=4K+B,-3/2=3K+B解得K=3/2,B=-6即,Y=3/2X-6
(1)直线l1:y=-3x+3与x轴交于点D,当y=0时,-3x+3=0,解得,x=1所以点D的坐标是(1,0)(2)由图可知直线l2过点A(4,0)、B(3,-32),设其解析式为y=kx+b,把A
(1)且l1与x轴交于点D∴令y=0解得x=1故点D(1,0)(2)点B没有纵坐标呢如果我们说的是同一题,那么点B(3,-2/3)设l2的解析式为y=kx+b则4k+b=03k+b=-2/3解得k=2
①已知A和B的坐标B坐标就是(3,-3/2)就可以得出l2的斜率k已知斜率和直线上任意一点坐标就可以求出l2解析式了③在1中求出l2的情况下通过l1和l2的解析式算出交点C的坐标再用l1算出D的坐标.
过B作直线平行于L1,将角2分为两个角分别为角3角4,角3=90°,角4与角1相等,所以∠2=133°
(1)点D是直线l1与x轴的交点,此时y=0.(2)直线l2经过A、B两点,可以通过待定系数法求l2的解析式.(3)求出点D的坐标后,可求AD的长,只要再求出点C到x轴的距离就可以求面积了,点C到x轴
A、平移MN使点B与N重合,∠1=60°,AB=2,解直角三角形得MN=433,正确;B、当MN与圆相切时,M,N在AB左侧以及M,N在A,B右侧时,AM=3或33,错误;C、若∠MON=90°,连接
∠2=90°+30°=120°再问:要过程再答:∵AB⊥L1,∴∠AOF=90°做BD∥L1∴∠ABD=90°∵L1∥L2∴BD∥L2∴∠1=∠DBC=30°∴∠2=∠ABD+∠DBC=90°+30°
1)直线l1:y=-3x+3与x轴交于点D,当y=0时,-3x+3=0,解得,x=1所以点D的坐标是(1,0)(2)由图可知直线l2过点A(4,0)、B(3,-32),设其解析式为y=kx+b,把A、
1.L1平行L2,两直线平行,同位角相等,所以角为90°,所以互相垂直2.两直线平行,同位角相等,内错角相等.运用这个来找.
题中l1和l2显然标反了.它(l2)的对称轴与l1(不是l2)相交于点C.1.y=-x²平移后可以写为y+m=-(x+n)²或y=-(x+n)²-m的形式l2由l1平移而
哪有图1.因为p关于L1对称点为p2有对称定理得OP1=OP同理可得OP2=OP所以OP1=OP22.设PP1交L1于A,PP2交L2于B有对称性质得角P1OA=角POA角P2OB=角POB又因为角P
(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线
过B点做一条平行与l1的直线可得角2=角1+90度=120度,希望采纳.