如图e,f分别是正方形的边dc,cb上
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:41:35
看图:--------------------------------------------------------希望可以帮到你!如对回答满意,--------------------------
1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度
因为是正方形,所以AB=BC=CD=ADDF=DC/4=AD/4AE=AD/2=2DF因为AD=AB,所以AB=2DE又因为△ABE=∽△DEF=直角△,所以角EAB=角EDF所以△ABE∽△DEF
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
设DA=a﹙向量﹚,DC=b设FN=tFBCN=sCAFN=t﹙b/2+a﹚=ta+﹙t/2﹚bFN=FC+CN=b/2+s﹙a-b﹚=sa+﹙1/2-s﹚b∴t=st/2=1/2-s解得t=s=1/
,在AB上取BM=BE,连接EM,∵ABCD为正方形,∴AB=BC,∵BE=BM,∴AM=EC,∵∠1=∠2,∠AME=∠ECP=135°,∴△AME≌△ECP,∴AE=EP;(3)存在.顺次连接DM
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
解题思路:解析:利用三角形全等,证明△ABE和△DAF全等可求。解题过程:如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE求AF=BE。解析:最终答案:
因为正方形ABCD对角线AC和BD所以AC=BDAB=AD=DC=BCAO=BO=CO=DO因为点E,F,G,H分别是AO,BO,CO,DO的中点所以EG,FH为四边形的对角线EO=FO=GO=HOE
延长DC到G,使CG=AE,连接BG易证△ABE≌△CBG∴∠CBG=∠ABE,BG=BE∴∠ABE+∠FBC=90度-∠BAF=45度=∠FBC+∠CBG=∠FBG又∵BG=BE,BF=BF∴△BE
十几年了,最近突然开始回顾学生时代,只有这立体几何还记得,(1)求证:EF⊥CD;∵ABCD为矩形∴CD⊥AD又∵PD⊥平面ABCD∴PD⊥CD∴CD⊥平面PAD,CD⊥PA∵E、F均为中点∴EF∥P
只要是正方形都是相似的,所以只要证EFGH是正方形首先E、F都是中点,可得∠BAE=∠FEO,∠ABF=∠EFO同理,可得图中类似角都相等由等式性质可得∠HEF=∠DAB同理四个角都是直角下面要证四条
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器
作BG垂直EF于G,很容易证明△BCF,△BAE,△BGE,△BGF四个三角形全等,于是四个角将90°平分成四份,所求角占两份,也就是45°.
证明:∵四边形ABCD是平行四边形,E、F分别是AE、DC的中点,∴AD=BA、DF=AE、∠ADF=∠BAE=90°,∴△ADF全等△BAE,∠EBA=∠FAD、∠AEB=∠DFA,∠FAD+∠AF
稍等再答:证明:将AE与DF的交点设为O∵正方形ABCD∴AD=CD=BC,∠ADC=∠C=90∴∠DAE+∠AED=90∵E是DC的中点,F是BC的中点∴DE=CD/2,F=BC/2∴DE=CF∴△
连接BE在RT△BAE和RT△CDE和RT△BCF中CD=BC=AB,CF=DF=AE所以RT△BAE和RT△CDE和RT△BCF全等∠ABE=∠FBC=∠DCE.1很容易证明BF垂直CE于P所以A,
延长EB至B’,使BB'=DF,连接AB'DF=BB'DA=AB∠D=∠BΔADF≌ΔABB'所以AF=AB'FE=DF+EB=EB+BB'=EB
延长EB到G,使BG=DF,连接AG∵ABCD是正方形∴AB=AD∠BAD=∠ABE=∠D=90°∴∠ABG=∠D=90°∴△ABG≌△ADF∴AG=AF∠BAG=∠DAF∵∠EAF=45°∴∠BAE