如图def分别是等边三角形abc的边AB,BC,AC的中点,P为BC上一点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:19:12
△ABC为等边三角形AB=BC=CAAB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∠A=∠B=∠C=90度所以三角形AEF,BDF,CED全等即有对应边EF=FD=DE即
证明:∵△ABC为等边三角形,∴∠A=∠C=60°.∴∠ADF+∠AFD=120°.(2分)∵△DEF是等边三角形,∴∠DFE=60°,DF=EF.∴∠AFD+∠CFE=120°.∴∠ADF=∠CFE
(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE.事实上,∵△ABC与△DEF都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD.又∵∠C
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=
是等边三角形,证明:AD=BE=CF,AB=BC=CA,→DB=EC=FA,又∵∠A=∠B=∠C=60°,∴△FAD≌△DBE≌△ECF,∴FD=DE=EF,∴△DEF是等边三角形,证毕!
∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
BD=CE BF=CD 因为角2=角B=角C=角E=角F=60  
证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形
∵△ABC为等边三角形∴AB=BC=CA∴AB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∵∠A=∠B=∠C=60度∴△AEF≌△BDF≌△CED即有对应边EF=FD=DE
证明:∵等边△ABC∴∠A=∠B=∠C=60∵等边△ADEF∴∠DEF=∠EFD=∠FDE=60,DE=EF=DF∵∠DEC=∠B+∠BDE=60+∠BDE,∠DEC=∠DEF+∠CEF=60+∠CE
∵在等边三角形ABC中点D,E,F分别在AB,BC,CA上∴DE=二分之一ACDF=二分之一BCEF=二分之一AB∵AC=AB=BC∴DE=DF=EF∴三角形DEF是等边三角形
成立∠ADF+∠AFD=180-∠A=120°∠ADF+∠BDE=180-∠FDE=120∴∠AFD=∠BDE∴△ADF≡△BED∴AD=BE同理证△BDE≡△CEF得BE=CF∴AD=BE=CF
∠DFC=∠A+∠ADF(三角形一个角的外角等于另外两个角之和)∠DFC=∠DFE+∠EFC∵∠A=∠DFE=60∴=∠ADF=∠EFCDF=EF∠A=∠C所以△ADF≌△CFEAD=CF同理BE=C
∵AB、BE、CF是等边△ABC的角平分线.∴AD⊥BC,BE⊥AC,CF⊥AB,D、E、F是等边三角形三边的中点,∴EF∥BC,DE∥AB,DF∥AC,∴△AEF、△BDF、△DEC是等边三角形,∴
(1)猜想:AD=BF=CEBD=AE=CF证明:∵ABC,三角形DEF为等边三角形∴角A=角EDF角A=角BDE=DF∵角A+角AED=角AED∴角AED=角DFB在三角形ADE和三角形BFD中{角
由⊿ABC和⊿DEF都是等边三角形可知⊿ADF≌⊿BED≌⊿CFE,⊿ADF中,AD==x,AF=1-x,∠A=60°,据余弦定理DF²=X²+(1-x)²-2x(1-x