如图def分别是等边三角形abc的边AB,BC,AC的中点,P为BC上一点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 16:19:12
如图def分别是等边三角形abc的边AB,BC,AC的中点,P为BC上一点
已知:如图,△ABC为等边三角形,点D、E、F分别在BC、CA、AB上,且AF=BD=CE,求证:△DEF是等腰三角形

△ABC为等边三角形AB=BC=CAAB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∠A=∠B=∠C=90度所以三角形AEF,BDF,CED全等即有对应边EF=FD=DE即

如图,△ABC为等边三角形,点D,E,F分别在AB,BC,CA边上,且△DEF是等边三角形,求证:△ADF≌△CFE.

证明:∵△ABC为等边三角形,∴∠A=∠C=60°.∴∠ADF+∠AFD=120°.(2分)∵△DEF是等边三角形,∴∠DFE=60°,DF=EF.∴∠AFD+∠CFE=120°.∴∠ADF=∠CFE

如图,已知△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且△DEF也是等边三角形.

(1)图中还有相等的线段是:AE=BF=CD,AF=BD=CE.事实上,∵△ABC与△DEF都是等边三角形,∴∠A=∠B=∠C=60°,∠EDF=∠DEF=∠EFD=60°,DE=EF=FD.又∵∠C

已知,如图,△ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.求证 △DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF三角形DEF是等边三角形吗?点

证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所

如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

已知:如图△ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是等边三角形

已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=

已知:如图,在等边三角形ABC中,点D、E、F分别在边AB、BC、AC上,且AD=BE=CF.△DEF是等边三角形吗?为

是等边三角形,证明:AD=BE=CF,AB=BC=CA,→DB=EC=FA,又∵∠A=∠B=∠C=60°,∴△FAD≌△DBE≌△ECF,∴FD=DE=EF,∴△DEF是等边三角形,证毕!

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,△DEF为等边三角形

1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)

如图,已知三角形abc是锐角三角形分别以ab,ac为边向外侧作等边三角形abm和等边三角形can.DEF分别是mb,BC

证明:做AB,AC,的中点记为G,H.连接DG,GE,EH,HF.则DG,GE,EH,HF均为三角形的中线由三角形中线定理的DG平行且等于1/2AM=1/2AB=EHDG=EH同理,GE=FH在三角形

已知:如图  △ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是

∵△ABC为等边三角形∴AB=BC=CA∴AB=AF+BF=BD+CD=CE+AE∵AF=BD=CE∴BF=CD=AE∵∠A=∠B=∠C=60度∴△AEF≌△BDF≌△CED即有对应边EF=FD=DE

如图,△ABC为等边三角形,点D,E,F分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

证明:∵等边△ABC∴∠A=∠B=∠C=60∵等边△ADEF∴∠DEF=∠EFD=∠FDE=60,DE=EF=DF∵∠DEC=∠B+∠BDE=60+∠BDE,∠DEC=∠DEF+∠CEF=60+∠CE

如图,在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,且角1=角2=角3,三角形DEF是等边三角形吗?试说明

∵在等边三角形ABC中点D,E,F分别在AB,BC,CA上∴DE=二分之一ACDF=二分之一BCEF=二分之一AB∵AC=AB=BC∴DE=DF=EF∴三角形DEF是等边三角形

如图 ABC是等边三角形,点D,E,F分别是线段AB.BC.CA上的点,若DEF是等边三角形 问 AD=BE=CF是否成

成立∠ADF+∠AFD=180-∠A=120°∠ADF+∠BDE=180-∠FDE=120∴∠AFD=∠BDE∴△ADF≡△BED∴AD=BE同理证△BDE≡△CEF得BE=CF∴AD=BE=CF

如图,△ABC为等边三角形,点DEF分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

∠DFC=∠A+∠ADF(三角形一个角的外角等于另外两个角之和)∠DFC=∠DFE+∠EFC∵∠A=∠DFE=60∴=∠ADF=∠EFCDF=EF∠A=∠C所以△ADF≌△CFEAD=CF同理BE=C

已知:如图,AB、BE、CF是等边△ABC的角平分线.求证:△DEF是等边三角形.

∵AB、BE、CF是等边△ABC的角平分线.∴AD⊥BC,BE⊥AC,CF⊥AB,D、E、F是等边三角形三边的中点,∴EF∥BC,DE∥AB,DF∥AC,∴△AEF、△BDF、△DEC是等边三角形,∴

如图,三角形ABC为等边三角形,D、E、F分别在BC、CA、AB上,且三角形DEF也是等边三角形.(1)除已知相等的边外

(1)猜想:AD=BF=CEBD=AE=CF证明:∵ABC,三角形DEF为等边三角形∴角A=角EDF角A=角BDE=DF∵角A+角AED=角AED∴角AED=角DFB在三角形ADE和三角形BFD中{角

如图,等边三角形ABC的边长是1,点D,E,F分别在AB,BC,CA上,且△DEF是等边三角形.设AD=X,△DEF的面

由⊿ABC和⊿DEF都是等边三角形可知⊿ADF≌⊿BED≌⊿CFE,⊿ADF中,AD==x,AF=1-x,∠A=60°,据余弦定理DF²=X²+(1-x)²-2x(1-x