如图def分别是三角形abc的各边上的点,且DE平行AC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:48:21
如图def分别是三角形abc的各边上的点,且DE平行AC
如图,三角形ABC~三角形DEF,AB:DE=k,AM,DN分别是三角形ABC和三角形DEF的高

(1)三角形ABM是相似于三角形DEN的,证明如下由三角形ABC~三角形DEF,故角ABC=角DEF又AM,DN分别是三角形ABC和三角形DEF的高,故角AMB=角DNE=90度三角形ABM与三角形D

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF三角形DEF是等边三角形吗?点

证明:因为三角形ABC是等边三角形所以AB=AC=BC因为DE平行BCAB平行EF所以四边形ABCE是平行四边形所以AB=CEAE=BC因为AC平行DF所以四边形ADBC和四边形ABFC是平行四边形所

如图 三角形ABC是等边三角形,过它的三个顶点分别作对边的平行线,得到一个新的三角形DEF,

证明:因为DF平行于BC,所以,角fAB=角BAC=角CAD=60°,同理角abf也是60°,所以三角形DEF为等边三角形.因为AB=BC所以三角形ABF=三角形CBE,所以B为EF中点,同理,A、C

如图,三角形abc的面积是24,d,e,f,分别是bc,ac,ad的中点,求三角形def的面积

3再问:能否说出过程呢再答:ABD=ADC再问:嗯嗯再答:AFE:ADC=1:4再答:AFE=DFE再问:Afe:adc=1:4是什么意思再答:中位线知道嚒再问:不知道再答:底两倍高两倍再答:所以面积

已知:如图,三角形ABC是等边三角形,点D,E,F分别是边AB,BC,CA的中点.:三角形DEF是等边三角形

∵△ABC是等边三角形又∵DEF是三边的中点∴DE是三角形的中位线根据中位线定理知DE=1/2AC同理其他两条边也有同样的性质.所以DE=EF=DF

三角形ABC,如图,已经三角形DEF的面积是25平方厘米,求三角形ABC的面积

连接DCS(BED)=S(BCD)/4S(BCD)=2S(ABC)/3S(BED)=S(ABD)/6连接BFS(ADF)=S(ABF)/3S(ABF)=4S(ABC)/5S(ADF)=4S(ABF)/

如图在三角形AGH中,三角形ABc,BcD,cDE,DEF,FGH的面积分别是19,21,23,25,28,29平方厘米

∵△SABC:△SBCD=19:21,且两三角形同高,∴AB:BD=19:21.如此类推可知:AC:CE=40+23,AD:DF=63=25,AE:EG=88:28,AF:FH=116:29.∵△EF

如图,三角形ABC的面积是24,D、E和F分别是BC、AC、和AD的中点.求:三角形DEF的面积.

∵∠DAC=∠DAC.AF=AD/2.AE=AC/2∴△ACD∽△AEF∴FE=DC/2.△FEA的高是△ADC、△ABC的高的二分之一∴△DEF的高是△ABC的高的二分之一∵D为BC中点∴CD=BC

如下图,DEF分别是BC.AD.BE的三等分点,三角形ABC的面积是27平方厘米,求三角形DEF的

三角形ABD的面积=27/3=9(cm2)三角形BED的面积=9/3*2=6(cm2)三角形DEF的面积=6/3*2=4(cm2)

如图,P是三角形ABC所在平面外的一点,D,E,F分别是三角形PBC,PAC,PAB的重心,证:面DEF//ABC

利用重心到顶点的距离与重心到对边中点的距离之比为2:1可以证明.连接PD交于BC于G,连接PE交AC于H,连接GH那么在三角形PGH中,PD/DG=2:1;PE/EH=2:1;即PD/PG=PE/PH

如图,三角形ABC的面积是24,D、E和F分别是BC、AC和AD的中点.求三角形DEF的面积.

3平方厘米因为D是BC的中点,所以△ADC的面积是三角形ABC的面积的一半=12因为E是AC的中点,所以△AED的面积是三角形ADC的面积的一半=6因为F是AD的中点,所以△FED的面积是三角形AEC

如图,圆O是三角形ABC的内切圆,D、E、F分别是切点,判定三角形DEF的形状(按角分类),并说明理由.

锐角三角形∠DEF=90°-1/2∠A∠EDF=90°-1/2∠B∠EFD=90°-1/2∠C都是锐角,所以是锐角三角形

如图,点DEF分别是三角形ABC的三条边中点,若三角形ABC的面积为S,求三角形DEF的面积

解过A点做BC的垂线交DF于点O交BC与点P.所以三角形ABC的面积为1/2AP×BC=S由于D,E,F是三遍的中点所以DE=1/2AC,DF=1/2BC,EF=1/2AB,AO=1/2AP所以三角形

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,角DEF=20°,则角BAC等于

∵AD为角平分线∴DE=DF,∵DE、DF为高、AD=AD∴△ADE≌△ADF(HL)∴AE=AF∴∠AFE=∠AFE又∵∠DEF=20°∴∠AEF=70°∴∠EAF=40°

如图,AD是三角形ABC的角平分线,DE,DF分别是三角形ABD和三角形ACD的高,求证:(1)角DEF=角DFE,(3

 (1)∵AD为角平分线∴DE=DF(角平分线到两边距离相等)∴∠DEF=∠DFE(等边对等角) (2)△ADE≌△ADF(HL)∴AE=AF