如图DE,CE分别是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 15:03:59
如图DE,CE分别是
如图,在三角形abc中,bd,ce是高,gf分别是bc,de的中点,试说明fg垂直de

连结GE,GD⊥AC,GE⊥AB,所以∠BEC=∠BDC=90度GD因G是BC中点,利用直角三角形斜边中线等斜边一半,得GE=BC/2,GD=BC/2所以GE=GD又因F是ED中点,由等腰三角形底边中

如图,已知:三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点,证明FG垂直DE

连DGFGDGFG直角三角形中线DG=FG=1/2BCGF是等腰三角形中线三线合一FG垂DE

如图 AD是△ABC的中线,在射线AD上分别截取DE、DF.使DE=DF,连接CE、BF……

△CDE≌△BDF证明:∵AD是中线∴BD=CD∵DE=DF,∠CDE=∠BDF∴△CDE≌△BDF(SAS)

如图,在平行四边形ABCD中,E,F分别是AB,CD的中点,连接DE,AF,CE,BF,分别相交于点G,H,

因为,ABCD为平行四边形所以,AB//CD,即AE//FC.又AE=FC,所以AECF为平行四边形所以,AF//EC,即GF//EH同理,DEBF也为平行四边形,所以DE//FB,即GE//FH因为

如图,BD.CE是△ABC的高,G.F分别是BC.DE的中点.求证:FG⊥DE

因为三角形斜边上的中线是斜边的一半,所以在直角三角形BCE中,EG=1/2BC,在直角三角形BCD中,DG=1/2BC,所以EG=DG,则三角形GDE是等腰三角形,因为等腰三角形底边上的中线又是底边上

如图,已知:△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点.

(1)FG垂直平分DE,  证明:连接GD、GE.∵BD是△ABC的高,G为BC的中点,∴在Rt△CBD中,GD=12BC,(直角三角形斜边上的中线等于斜边的一半)同理可得GE=1

如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.

证明:连接GD、GE,则:∵Rt△BCD中,G是斜边BC的中点∴GD=1/2BC【斜边中线是斜边的一半】同理:GE=1/2BC∴GE=GD又F是DE中点∴FG⊥DE【等腰三角形底边上的中线是底边上的高

如图,四边形ABCD中,AD=BC,DE⊥AC,BF⊥AC,垂足分别是E、F,AF=CE.证明:四边形ABCD是平行四边

∵AF=CE∴AE=AC-CE=AC-AF=CF又AD=CB∴Rt△ADE≌Rt△CBF∠DAE=∠BCF∴AD∥BC又AD=BC∴四边形ABCD是平行四边形

如图,已知三角形ABC中,BD,CE分别是AC,AB边上的高,G,F分别是BC,DE的中点.试探索FG

因为CE为AB上的高所以三角形BCE为直角三角形所以F为BC的中点所以EF=1/2*BC同理DF=1/2*BC所以EF=DF所以三角形FED为等腰三角形所以G为DE中点所以GF垂直DE

已知:如图,在三角形ABC中,BF=CE,DF垂直AB,DE垂直AC,垂足分别是F,E,DF=DE,

∵∠BFD=∠DEC=90°∴∠DFA=∠DEA=90°AF平方=AD平方-DF平方(勾股定理)AE平方=AD平方-DE平方∴DF=DE又∵BF=CE∴AB=AC再问:非常感谢。

如图,BD、CE是△ABC的高,G、F分别是BC、DE的中点,试说明:FG⊥DE.

/>线段FG和DE的关系是:GF⊥DE理由:连接GD、GE因为点G是直角△BCD斜边BC的中点所以GD是直角△BCD斜边上的中线所以GD=BC/2同理可证GE=BC/2所以GD=GE又因为F是DE的中

如图,BD、CE是三角形ABC的两条高,M、N分别是BC、DE的中点,试说明MN与DE的位置关系.

连接DM,EM,∵M是BC的中点,BD、CE是△ABC的两条高,∴EM=12BC,DM=12BC,∴EM=DM,∵N是DE的中点,∴MN垂直平分DE.

如图,△ABC中,BD、CE是△ABC的两条高,点F、M分别是DE、BC的中点.求证:FM⊥DE.

证明:连接MD、ME.∵BD是△ABC的高,M为BC的中点,∴在Rt△CBD中,MD=12BC,(直角三角形斜边上那的中线等于斜边的一半)同理可得ME=12BC,∴MD=ME,∵F是DE的中点,(等腰

已知:如图,BD.CE分别是△ABC的高,M.N分别是BC,DE的中点,分别连接ME,MD,求证MN⊥ED

EM,DM分别是两个直角三角形的斜边中线,所以,斜边都是BC,EM=DM三角形DME是等腰三角形N是DE边中点,所以MN是△DME的中线也是高(等腰三角形性质)

初二数学矩形题目如图,BD,CE是△ABC的高,G,F分别是BC,DE的中点,求证:FG⊥DE.

连接GEGD∵三角形BEC是直角三角形,G是BC中点∴GE=1/2BC同理DG=1/2BC∴GE=DG∵F是ED中点∴GF⊥DE(这道题主要用的是直角三角形斜边的中线等于斜边的一半)

如图,在△ABC中,BD、CE是高,M,N分别是BC、DE的中点,求证:MN⊥DE

连结MD,ME.因为BD是高,所以BC是直角三角形BCD的斜边,因为M是BC的中点,所以MD=BC/2,同理ME=BC/2,所以MD=ME,三角形MDE是等腰三角形,因为N是DE的中点,所以MN垂直于

已知:如图,BD,CE分别是三角形ABC的高,M N分别是BC,DE的中点,分别连接ME,MD 求证:MN垂至于ED

证明:连接DM、EM∵M是Rt△BCD斜边上的中点∴DM=1/2BC又∵M是Rt△BCE斜边上的中点∴EM=1/2BC∴DM=EM,△DEM为等腰三角形∵N为底边DE的中点∴MN⊥DE

如图,bd,ce是△abc的高,g、f分别是bc、de的中点,求证明:fg⊥de

连接EG、DG∵CE⊥AB,BD⊥AC∴在Rt△BCE和Rt△BCD中G是斜边BC的中点∴EG=1/2BC,DG=1/2BC∴EG=DG∵F是DE的中点,即EF=DFFG=FG∴△EFG≌△DFG(S

直角三角形判定已知:如图,BD,CE分别是三角形ABC的高,M N分别是BC,DE的中点,分别联结ME,MD 求证:MN

BD是高所以三角行BDC是直角三角形DM是中线DM=0.5BC同理CE是高三角形BEC中EM是中线EM=0.5BC由此DM=EM三角形MDE是等腰三角形角EMD是顶角N是DE中点根据等腰三角形三线合一