如图C为线段上一动点 过BD分别作BD的垂线
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:12:52
AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:DC
(1)30度(用特殊情况解,CD垂直AD时,因为无论C在AB那个地方,度数是不会变的)(2)当OC垂直AB时,面积最小.坐标为(3√3/4,9/4),你可以自己算算再问:第一小题我知道的,第二小题--
角BCE=角ACD=120所以三角形BCE全等于三角形ACD所以角EBD=角MAD又因为AC=BC角MCB=角ACN=60所以三角形MCB全等于三角形ACN所以CM=CN
相似三角形△ABD相似△MAD(两个角相等)所以BD/AD=AD/MD又M为中点-->BD=2MD代入得出AD*AD=2MD*MD△ADB中AB*AB+AD*AD-2ABADcos60=BD*BD将A
这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid
①L=√(1+X²)+√[(8-X)²+5²]②AE为直线时L最小.5/(8-X)=1/X.X=4/3.L=√[(1+5)²+8²]=10③L=√(X
根据勾股定理,CE²=CD²+DE²=x²+2²=x²+4AC²=AB²+BC²=5²+(12-x)
1)AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:
_______________1)√25+(8-x)²+√x²+12)点C在线段AE上时,即点A、C、E共线时,AC+CE的值最小3)再问:第三问嘞?再答:第三问不会
AC+AE=根号[5^+(8-X)^]+根号[1^+X^]两点之间线段最短不懂联系我
这个明显A、C、E在一条直线上,AC+CE值最小嘛再问:过程能不能详细点再答:把A和E连起来,A、C、E三点就构成了一个三角形,根据三角形定理,两边之和大于第三边,所以只要这三个点不在一条直线上,AC
C在AE直线的中轴线上时满足AC=CE.初中数学书中应该是有该定义的.
(1) (2)当C点在线段BD与线段AE的交点处的时候,AC+CE的值最小.(3)如图:过E点作BD的平行线交AB延长线于F点;由(2)可知代数式的最小值就是线段AE的长在Rt△AFE中,∠
(1)B'(2t+1,0)(2)∵PQ的解析式为x=t∴PC=4-x,∴PQ:2=(4-x):4∴PQ=0.5(4-x)BC=4-(-1)=5当BP=1/2BC时,点B‘与点C重合,故当BP=1/2B
(1)设B′横坐标为a,则-1+a2=t,解得a=2t+1.故B′点坐标为(2t+1,0).(2)①如图,当1.5≤t≤4时,重合部分为三角形,∵△CPQ∽△COA,∵PCOC=PQAO,即4-t4=
易求得AB=√5,BC=5,AC=2√5所以△ABC与△QPC相似,PQ:AB=PC:ACPQ=(4-t)/2s=1/2(4-t)(4-t)/2=(4-t)²/4
做CF垂直AN,因为角B=90,所以CF=AB,因为角CFD+角FCD=CDA,所以角EAD=角FCD,三角形DCF相似三角形AED,CF/CD=AD/DEAB/CD=AD/DEDE/DC=AD/DB
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、
如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、