如图C为线段上一动点 过BD分别作BD的垂线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 05:12:52
如图C为线段上一动点 过BD分别作BD的垂线
这个数学题怎么解,2.如图,c为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,

AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:DC

(初三数学)如图,已知直线y=√3/3x+3分别交x轴于A,B,点C为线段AB上的一动点.其余如图

(1)30度(用特殊情况解,CD垂直AD时,因为无论C在AB那个地方,度数是不会变的)(2)当OC垂直AB时,面积最小.坐标为(3√3/4,9/4),你可以自己算算再问:第一小题我知道的,第二小题--

如图,已知点C式线段BD上一点,分别以BC,CD为边长在BD同侧作等边三角形△ABC和△CDE.

角BCE=角ACD=120所以三角形BCE全等于三角形ACD所以角EBD=角MAD又因为AC=BC角MCB=角ACN=60所以三角形MCB全等于三角形ACN所以CM=CN

如图1,已知等边△aBC,D为AC边上的一动点,Cd=nDA,连接线段BD,M为线段BD上一点,

相似三角形△ABD相似△MAD(两个角相等)所以BD/AD=AD/MD又M为中点-->BD=2MD代入得出AD*AD=2MD*MD△ADB中AB*AB+AD*AD-2ABADcos60=BD*BD将A

如图,C为圆O直径AB上的一动点,过点C的直线交圆O

这道题没有具体的函数关系式这道题主要的是看我们的趋势判断能力因为这里面没有数值写不出具体的关系式只能说是一个抛物线的数值关系你们现在还没有学到高中才有的哈你也可以看看http://baike.baid

在20:如图8,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,B

①L=√(1+X²)+√[(8-X)²+5²]②AE为直线时L最小.5/(8-X)=1/X.X=4/3.L=√[(1+5)²+8²]=10③L=√(X

如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设

根据勾股定理,CE²=CD²+DE²=x²+2²=x²+4AC²=AB²+BC²=5²+(12-x)

C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=

1)AC+CE的长:√(x^2+1)+√[(8-x)^2+25]2)当A、C、E三点共线时,AC+CE的值最小,所以连接AE,交BD于C'可证三角形ABC'与三角形EDC'全等,则AB:BC'=DE:

如图 C为线段BD上一动点 分别过点B D 作AB⊥BD ED⊥BD 连接AC EC 已知 AB=5 DE=1 BD =

_______________1)√25+(8-x)²+√x²+12)点C在线段AE上时,即点A、C、E共线时,AC+CE的值最小3)再问:第三问嘞?再答:第三问不会

如图8,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,

AC+AE=根号[5^+(8-X)^]+根号[1^+X^]两点之间线段最短不懂联系我

如图,C为线段BD上的一动点,分别过点B,D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=1,BD=8

这个明显A、C、E在一条直线上,AC+CE值最小嘛再问:过程能不能详细点再答:把A和E连起来,A、C、E三点就构成了一个三角形,根据三角形定理,两边之和大于第三边,所以只要这三个点不在一条直线上,AC

如图 C为线段BD上一动点 分别过点B、D作AB⊥BD,ED⊥BD,连接AC,EC.已知AB=5,DE=2,BD=12,

C在AE直线的中轴线上时满足AC=CE.初中数学书中应该是有该定义的.

如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC,已知AB=5,DE=1,

(1) (2)当C点在线段BD与线段AE的交点处的时候,AC+CE的值最小.(3)如图:过E点作BD的平行线交AB延长线于F点;由(2)可知代数式的最小值就是线段AE的长在Rt△AFE中,∠

如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0)点P是线段OC上的一动点(点P与点

(1)B'(2t+1,0)(2)∵PQ的解析式为x=t∴PC=4-x,∴PQ:2=(4-x):4∴PQ=0.5(4-x)BC=4-(-1)=5当BP=1/2BC时,点B‘与点C重合,故当BP=1/2B

给图 如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点

(1)设B′横坐标为a,则-1+a2=t,解得a=2t+1.故B′点坐标为(2t+1,0).(2)①如图,当1.5≤t≤4时,重合部分为三角形,∵△CPQ∽△COA,∵PCOC=PQAO,即4-t4=

如图,在平面直角坐标系中,点A、B、C的坐标分别为(0,2)、(-1,0)、(4,0).P是线段OC上的一动点(点P与点

易求得AB=√5,BC=5,AC=2√5所以△ABC与△QPC相似,PQ:AB=PC:ACPQ=(4-t)/2s=1/2(4-t)(4-t)/2=(4-t)²/4

如图,过线段AB两端点分别作MB⊥AB,NA⊥AB,垂足分别为点B,点A;点D是射线AN上的一点,点E是线段AB上的一动

做CF垂直AN,因为角B=90,所以CF=AB,因为角CFD+角FCD=CDA,所以角EAD=角FCD,三角形DCF相似三角形AED,CF/CD=AD/DEAB/CD=AD/DEDE/DC=AD/DB

如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形APEF和PHKB,

如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、

(2013•桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形A

如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、

(2013?桂林)如图,已知线段AB=10,AC=BD=2,点P是CD上一动点,分别以AP、PB为边向上、向下作正方形A

如图所示:当P移动到C点以及D点时,得出G点移动路线是直线,利用正方形的性质即线段O1O2中点G的运动路径的长就是O2O″的长,∵线段AB=10,AC=BD=2,当P与C重合时,以AP、PB为边向上、