如图cd是圆o的弦 ab是直径 且cd平行ab 连接ac,ad,od
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:52:00
∵弦AB=CD∴弧AB=弧CD∴∠ACB=∠DBC弧AB+弧AD=弧CD+弧AD即弧BD=弧AC∴∠ABC=∠DCB∵∠ACB=∠DBC,AB=CD∴⊿ABC≌⊿DCB﹙AAS﹚
作OE⊥CD于E,连结OC则CE=CD/2(垂径定理),OC=AB/2,又∵CE
(1)证明:如图.∵OC=OB,∴∠BCO=∠B.∵∠B=∠D,∴∠BCO=∠D;(2)∵AB是⊙O的直径,且CD⊥AB于点E,∴CE=12CD=12×42=22,在Rt△OCE中,OC2=CE2+O
1)因为AB为圆O的直径、CD是弦、且AB垂直CD所以弧BC=弧BD所以∠BCD=∠A因为OA=OC所以∠A=ACO所以∠ACO=∠BCD2)因为AB为圆O的直径、CD是弦、且AB垂直CD所以CE=D
CP*CP=AP*PB(三角形APC与三角形BPC相似得出)AP:PB=1:3可以得出PB=根号3所以OB=2PB=2倍根号3
证明:因为OA=OC所以∠ACO=∠A因为AB为圆O的直径,CD是弦,且AB垂直CD于E所以弧BC=弧BD所以∠A=∠BCD(等弧所对的圆周角相等)所以∠ACO=∠BCD供参考!JSWYC
∵BC=CD=DAAB是直径∴弧BC=弧CD=弧DA=60°∴∠AOD=60°∴∠BOD=120°
∵CD⊥AB于点E∴根据勾股定理得(16÷2)²+(AO-4)²=(AO)²∴AO=10
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
1、∵AB是直径,CD⊥AB∴垂径定理:CP=1/2CD=4∠ACB=90°∵∠B=30°∴在RT△BCP中:BC=2CP=8在RT△ABC中:cos∠B=BC/ABAB=BC/cos30°=8/(√
连接AC,BC因为AB是直径,弦CD垂直AB于P所以CP=1/2CD=4因为∠B=30°,角CPB=90度所以CB=CP/SIN30=4/0.5=8又因为角ACB=90度所以直径AB=CB/COS30
证明:连接MB∵M为圆上一点,∴∠AMB=∠FMB=90°∴∠AMD+∠DMB=∠FMC+∠CMB又∵B为弧CD的中点∴∠DMB=∠CMB∴∠AMD=∠FMC再问:谢了
120度直径AB对应的弧度为180度,BC=CD=DA,则角AOD=角DOC=角COB=60度所以角BOD=120度
连接OC,OD三角形OPC中,PC=PO则∠C=∠POC又OC=OD所以∠C=∠PDOBD弧所对的圆心角BOC=∠PDO+∠OPD=∠PDO+∠C+∠POC=3∠CAC弧所对的圆心角为∠C所以弧AC=
假想三角形CDB的B点移动到O点,三角形CDB面积是不变的,于是阴影面积就变为一个90°的伞形:阴影面积=π*1*1*(90/360)=π/4=0.785
建议:\x09(4)多行单条件:
等等再答:过点O作OE⊥CD于E∵PA=1,PB=5∴AB=PA+PB=6∴AO=AB/2=3∴OP=AO-PA=3-1=2∵OE⊥CD∴CD=2DE,∠OEP=∠OED=90∵∠DPB=∠APC=4
∵弧CD为90°∴角COD=90°∵CO=DO∴角CDO=45°∵弦CD平行于AB∴角DOB=角CDO=45°从而角COB=角COD+角ODB=90°+45°=135°∴扇形OCDB的面积S1=135
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=