如图CD平分∠ACB,∠BCD=∠E则∠BCD 与∠CAE相等吗
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:19:00
证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED
这个题是一道很简单的平面几何证明:稍微动动脑筋就能证明出来.
∵AD//BC(已知)∴∠DAE=∠AEB(两直线平行,内错角相等)∠DFC=∠FCB(同理)∴∠AEB=∠FCB(等量代换)∴AE//FC(同位角相等,两直线平行)
延长BE和CD相交于点F∵AB‖CF∴∠ABF=∠BFC(两直线平行,内错角相等)又∵∠ABF=∠CBF∴∠BFC=∠CBF∴CB=CF=CD+DF(等角对等边)又∵CB=AB+CD(已知)∴AB=D
证明:设CG与AF交于点H∵∠ACB=90°,CD⊥AB∴∠BCD=∠CAB∵∠CAF=∠BAF=1/2∠BAC,∠DCG=∠BCG=1/2∠BCD∴∠BAF=∠DCG∵∠AED=∠CEH(对顶角)∴
再答:再答:呵呵再答:我也在做呢再问:谢谢QwQ话说你好。
延长CD、BE交于点FBE平分∠ABC,所以∠ABE=∠CBEAB∥CD,所以∠ABE=∠CFE因此∠CBE=∠CFE,BC=CF因为BC=AB+CD,CF=DF+CD,所以AB=DFAB∥CD,所以
由题得∠ACD=∠DCE=∠ECB=30°∴∠A=60°=∠ACE∴AE=EB∴∠B=30°=∠ECB∴CE=EB即AE=BE
角平分线定理和相似、比例判定平行.证明:EF∥BC.理由如下:∵∠ADC=90°∴∠DAC+∠DCA=90°∵∠DCA+∠BCD=90°∴∠DAC=∠DCB∵∠CDA=∠BDC=90°∴△CDA∽△B
解;分别延长CD、BE交于点F可证三角形ABE于三角形DFE全等.所以BE=EFAB=DF则BC=AB+CD=CD+DF=CF所以三角形BCF为等腰三角形CE平分角BCD
证明:∵CD平分∠ACB,即∠ACD=∠DCE,又∵AC∥DE,∴∠ACD=∠CDE,∴∠DCE=∠CDE;∵CD∥EF,∴∠CDE=∠DEF,∠DCE=∠FEB;∴∠DEF=∠FEB.即EF平分∠D
证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED
证明:如图∵AC‖DE∴∠ACD=∠EDC∵CD‖EF∴∠DEF=∠EDC ∠DCE=∠FEB ∴∠ACD=∠DEF又EF平分∠DEB∴∠DEF=∠FEB=
∵∠ACD+∠BCD=∠ACB=90°∠ACD:∠BCD=1:2,∴∠ACD=1/3∠ACB=30°∠BCD=2/3∠ACB=60°∵CD⊥AB∴∠A+∠ACD=90°∴∠A=60°∴∠B=90°-∠
如图,∵CD平分∠ACB,∠BCD=31°,∴∠ACB=2∠BCD=62°,又∵∠A=68°,∴∠B=180°-∠A-∠ACB=50°,∴∠ADC=∠B+∠BCD=50°+31°=81°.综上所述,∠