如图CD平分∠ACB,∠BCD=∠E则∠BCD 与∠CAE相等吗

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 12:19:00
如图CD平分∠ACB,∠BCD=∠E则∠BCD 与∠CAE相等吗
如图,已知CD平分∠ACB,且DE平行AC,CD平行EF,试说明:EF平分∠DEB

证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED

如图CD平分∠ACB ,EF平分∠DEB AC‖DE 求证CD‖EF

这个题是一道很简单的平面几何证明:稍微动动脑筋就能证明出来.

如图已知AB//CD,AD//BC,AE平分∠DAB,CF平分∠BCD

∵AD//BC(已知)∴∠DAE=∠AEB(两直线平行,内错角相等)∠DFC=∠FCB(同理)∴∠AEB=∠FCB(等量代换)∴AE//FC(同位角相等,两直线平行)

如图,已知:在四边形ABCD中,AB//CD,BE平分∠ABC,AB+CD=BC求证:CE平分∠.BCD

延长BE和CD相交于点F∵AB‖CF∴∠ABF=∠BFC(两直线平行,内错角相等)又∵∠ABF=∠CBF∴∠BFC=∠CBF∴CB=CF=CD+DF(等角对等边)又∵CB=AB+CD(已知)∴AB=D

如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于点D,AF平分∠BAC交CD于点E,交BC于点F,CG平分∠BCD

证明:设CG与AF交于点H∵∠ACB=90°,CD⊥AB∴∠BCD=∠CAB∵∠CAF=∠BAF=1/2∠BAC,∠DCG=∠BCG=1/2∠BCD∴∠BAF=∠DCG∵∠AED=∠CEH(对顶角)∴

如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,CD=CE.(1)求证 :△ACD

再答:再答:呵呵再答:我也在做呢再问:谢谢QwQ话说你好。

如图,AB//CD,BE平分∠ABC,交AD于点E,若AB+CD=BC.一求证:CE平分∠BCD.

延长CD、BE交于点FBE平分∠ABC,所以∠ABE=∠CBEAB∥CD,所以∠ABE=∠CFE因此∠CBE=∠CFE,BC=CF因为BC=AB+CD,CF=DF+CD,所以AB=DFAB∥CD,所以

如图在△ABC中,∠ACB=90°,CD为高.CE平分∠BCD,∠ACD;∠BCD=1;2那么CE3是AB边上的中线吗?

由题得∠ACD=∠DCE=∠ECB=30°∴∠A=60°=∠ACE∴AE=EB∴∠B=30°=∠ECB∴CE=EB即AE=BE

如图 已知△ABC中 ∠ACB=90° CA=CB CD⊥AB于D,CE平分∠BCD交AB于E,AF平分∠A交CD于F.

角平分线定理和相似、比例判定平行.证明:EF∥BC.理由如下:∵∠ADC=90°∴∠DAC+∠DCA=90°∵∠DCA+∠BCD=90°∴∠DAC=∠DCB∵∠CDA=∠BDC=90°∴△CDA∽△B

如图,AB‖CD,BE平分∠ABC,点E为AD中点,且BC=AB+CD,求证:CE平分∠BCD.

解;分别延长CD、BE交于点F可证三角形ABE于三角形DFE全等.所以BE=EFAB=DF则BC=AB+CD=CD+DF=CF所以三角形BCF为等腰三角形CE平分角BCD

已知,如图,CD平分∠ACB,AC∥DE,CD∥EF,求证:EF平分∠DEB.

证明:∵CD平分∠ACB,即∠ACD=∠DCE,又∵AC∥DE,∴∠ACD=∠CDE,∴∠DCE=∠CDE;∵CD∥EF,∴∠CDE=∠DEF,∠DCE=∠FEB;∴∠DEF=∠FEB.即EF平分∠D

已知,如图,CD平分∠ACB,AC//DE,CD//EF,试说明EF平分∠DEB.

证明:∵EF‖CD∴∠BEF=∠BCD,∠DEF=∠CDE∵DE‖BC∴∠CDE=∠ACD∵CD平分∠ACB∴∠ACD=∠BCD∴∠BCD=∠CDE=∠DEF∴∠BEF=∠DEF即EF平分∠BED

已知,如图,EF平分∠DEB,AC∥DE,CD∥EF,试说明CD平分∠ACB

证明:如图∵AC‖DE∴∠ACD=∠EDC∵CD‖EF∴∠DEF=∠EDC  ∠DCE=∠FEB  ∴∠ACD=∠DEF又EF平分∠DEB∴∠DEF=∠FEB=

已知:如图,在△ABC中,∠ACB=90°,CD为高,CE平分∠BCD,且∠ACD:∠BCD=1:2,试证明:∠AEC=

∵∠ACD+∠BCD=∠ACB=90°∠ACD:∠BCD=1:2,∴∠ACD=1/3∠ACB=30°∠BCD=2/3∠ACB=60°∵CD⊥AB∴∠A+∠ACD=90°∴∠A=60°∴∠B=90°-∠

如图,在△ABC中,CD平分∠ACB,∠A=68°,∠BCD=31°.求∠B,∠ADC的度数.

如图,∵CD平分∠ACB,∠BCD=31°,∴∠ACB=2∠BCD=62°,又∵∠A=68°,∴∠B=180°-∠A-∠ACB=50°,∴∠ADC=∠B+∠BCD=50°+31°=81°.综上所述,∠