如图cd⊥abBE⊥AC于点E,BE.CD交于点o

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:24:02
如图cd⊥abBE⊥AC于点E,BE.CD交于点o
如图①E,F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M

∵AB=CD,AF=CE,∠AFB=∠CED=90°∴△ABF≌△CDE∴BF=DE∵DE⊥AC于E,BF⊥AC于F∴BF∥DE∴∠MBF=∠EDM又∵∠AFB=∠CED,BF=DE∴△BMF≌△DM

如图,AB为圆O的直径,CD⊥AB于点E,交圆O于C、D两点,OF⊥AC于点F

(1)答案不唯一,只要合理均可.例如:①BC=BD;②OF‖BC;③∠BCD=∠A;④△BCE∽△OAF;⑤BC^2=BE·AB;⑥BC^2=CE^2+BE^2;⑦△ABC是直角三角形;⑧△BCD是等

如图,AB为圆O的直径,CD⊥AB于点E,叫圆O与点D,OF⊥AC于点F.

1.连接OCCD⊥AB于点E,∴BC=BD(垂径定理)∴∠BCD=∠D=30°(等弦所对的圆周角相等)又因∠BEC=90°,BC=1∴BE=BC/2=1/2CE=√(BC²-BE²

如图1,E、F分别为线段AC上的两个动点,且DE⊥AC于E点,BF⊥AC于F点,若AB=CD AF=CE&nb

1证明∵DE⊥ACBF⊥AC∴DE∥BF∴∠EDB=∠FBD∠AFD=∠CED=90°又∵AB=CDAF=BD∴△ABF全等于△CDE∴BF=DE又∵∠EDB=∠FBDBF=DE∠AFD=∠CED=9

已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长

证明:∵FE⊥AC于点E,∠ACB=90°,∴∠FEC=∠ACB=90°.∴∠F+∠ECF=90°.又∵CD⊥AB于点D,∴∠A+∠ECF=90°.∴∠A=∠F.在△ABC和△FCE中,∠A=∠F∠A

如图,已知CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O

①证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC,∴OD=OE,在△DOB和△EOC中,∠DOB=∠EOC,OD=OE,∠ODB=∠OEC,∴△DOB≌△EOC(ASA),∴OB=OC.②连接AO.

如图,已知AC⊥BD于C,CF=CD,BF的延长线交AD于点E,且AC=BC.

证明:∵AC⊥BD,∴∠FCB=∠DCA=90°,∵AC⊥BD,AC=BC,∴△ACD≌△FCB,∴∠1=∠D.(2)∵△ACD≌△FCB(已证),∴∠FBC=∠DAC,∵AC⊥BD于C,∴∠1+∠F

如图,在△ABC中,∠ACB=90,AC=BC,AD⊥CD于点D,BF⊥CD于点F,AB交CD于点E.求证:AD=BF-

证明:∵∠ACB=90°,BF⊥CD∴∠CBF+∠BCF=∠BCF+∠ACD=90°∴∠BCF=∠ACD∵∠D=∠BFC=90°,CA=CB∴△BCF≌△CAD∴AD=CF,BF=CD∴AD=CF=C

如图,AD平分∠BAC,DE⊥AB于点E,DF⊥AC,交AC的延长线于点F,且BD=CD.

1、△CDF≌△BDE证明:∵AD平分∠BAC∴∠BAD=∠CAD∵DE⊥AB,DF⊥AC∴∠AED=∠AFD∠BED=90∵AD=AD∴△AED≌△AFD(AAS)∴DE=DF∵BD=CD∴△CDF

已知:如图,线段,AB∥CD,AC⊥CD,AC、BD相交于点P,E、F分别是线段BP和DP的中点. 

(2)连接EN由(1)得EA=EB所以角EAB=角EBA因为AB平行DQ所以角EBA=角EDQ,角EAB=角EQD所以角EDQ=角EQD所以ED=EQ又因为N为DQ中点所以EN垂直DQ因为AC垂直DQ

如图,已知CD⊥AB于D,BE⊥AC于E,CD交BE于点O.

①连接AO.∵CD⊥AB,BE⊥AC,∴∠CEB=∠BDO=90°;又∵∠COE=∠BOD(对顶角相等),∴∠C=∠B(等角的余角相等);∴在△CEO和△BDO中,∠C=∠BOC=OB∠COE=∠BO

如图,CD垂直AB于点D,BE垂直AC于点E

因为ao平分∠bac,CD垂直AB于点D,BE垂直AC于点E.所以oe=od(角平分线定理)所以三角形aod全等与aoe,所以∠aoe=∠aod.所以由平角得到∠dob=∠eoc,再由全等定理得三角形

如图,AB为⊙O的直径,CD⊥AB于点E,交⊙O于点D,OF⊥AC于点F.

(1)证明:∵AB为⊙O的直径,∴∠ACB=90°(1分)∵CD⊥AB,∴∠DEB=90°,∴∠ACB=∠DEB(2分)又∵∠A=∠D,∴△ACB∽△DEB.(3分)(2)连接OC,则OC=OA,(4

如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F.求证:DE=DF

1、∵AD=ADAB=ACBD=CD∴△ABD≌△ACD(SSS)∴∠BAD=∠CAD即∠EAD=∠FAD∵DE⊥AB于点E,DF⊥AC于点F∴∠AED=∠AFD=90°∵AD=AD∴△ADE≌△AD

已知:如图,BF⊥AC于点F,CE⊥AB于点E,且BD=CD

证明:(1)∵BF⊥AC,CE⊥AB,∠BDE=∠CDF(对顶角相等),∴∠B=∠C(等角的余角相等);在Rt△BED和Rt△CFD中,∠B=∠CBD=CD(已知)∠BDE=∠CDF,∴△BED≌△C

如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:E

证明:∵AC⊥BC,BE⊥CD,∴∠ACF+∠FCB=∠FCB+∠CBE=90°.∴∠FCA=∠EBC.∵∠BEC=∠CFA=90°,AC=BC,∴△BEC≌△CFA.∴CE=AF.∴EF=CF-CE

..已知:如图,在三角形ABC中,CD⊥AB于点D,BE⊥AC于点E,BE、CD交于点O,且BD=CE,求证:AB=AC

证明:因为CD⊥AB,BE⊥AC  所以角BDC=角BEC=90度  又因为BD=CE  所以三角形BDC全等于三角形CEB  所以角DBC=角ECB  即在三角形ABC中,角ABC=角ACB  所以

如图,AB是圆O的直径,CD⊥AB于点E,交圆O于点D,OF⊥AC于点F.

这个很简单的.我想你要自己学会思考问题.这是一种能力,因为日后的生活中,很问题都自己去思考.到了高中,几何和函数一体的.所以你得自己去弄明白.(1):第一条:∵AB是直径,∴∠ACB=90'根据勾股定

如图,已知AB=AC,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点F,求证AF平分∠BAC.

∠ADC=∠AEB=90°,∠BAE=∠CAD,AB=AC,所以△ADC≌△AEB,所以AD=AE,又因AF=AF,∠ADF=∠AEF=90°,所以RT△ADF≌RT△AEF,∴∠DAF=∠EAF,A