如图BD=CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:00:20
如图BD=CD
已知,如图AB⊥BD,CD⊥BD,AD=BC,求证△ABD≌△CDB

因为AB⊥BD,CD⊥BD所以AB//CD又AD=BC所以ABCD是平行四边形所以△ABD≌△CDB

如图:AB⊥BD,ED⊥BD,AB=CD,AC=CE.求证:AC⊥CE.

证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠CDE=90°,在Rt△ABC和Rt△CDE中,AB=CDAC=CE,∴Rt△ABC≌Rt△CDE(HL),∴∠A=∠ECD,∵∠A+∠ACB=90°,∴

已知:如图,AB垂直BD,CD垂直BD,AD=BC.求证:(1)AB=DC,(2)AD//BC

证三角形ABD全等于三角形BCD再答:AB平行且等于CD四边形ABCD是平行四边形

已知:如图AC∥BD,AB∥CD,AE和BE分别平分∠CAB和∠DBA,CD过点E.求证:CD=AC+BD

因为AE平分∠CAB所以∠CAE=∠EAB又因为CD//AB所以∠CEA=∠EAB所以∠CEA=∠CAE所以CE=AC因为EB平分∠DBA所以∠DBE=∠EBA有因为CD/AB所以∠DEB=∠EBA所

如图AC、BD相交于点O,AC=BD,AB=CD.急)

最简便做法证明:连接AD三角形DAB与三角形ADC全等原因AD=ADAC=BDAB=CD{SSS}接着可以推出∠B=∠C

如图,已知线段AB和CD的公共部分BD=三分之一AB 求线段BD AC的长

按实际比例画出图来,就可以明显的看出来EF=2.5BDBD=6AC所以BD=4cmAC=24cm

如图,已知AB⊥BD,CD⊥BD,AB=DC,求证AD‖BC

∵AB=CD∠ABD=∠CDBBD=BD∴△ABD≌△BCD∴∠ADB=∠DBC内错角相等∴AD∥BC

如图,已知AB⊥BD,AC⊥AB,AB=AC,求证:BD=CD

看不到图啊再问:再问:再问:能不能多帮我做啊?再答:像素太低了,看不清楚啊再问:好吧,我一个拍再问:再答:2题是边边边定理,三条边全部相等再问:额(⊙o⊙)…再问:要证明

已知:如图,AB⊥BD,CD⊥DB,AD=BC 求证:AB=CD

需要解答吗?再问:需要。再答: 再答:希望采纳哦,*^o^*再问:=_=你说的时候我都去学校了

已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:

证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,AD=BC(已知)BD=DB(公共边),∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三

如图,AB⊥BD,ED⊥BD,AC⊥CE,BC=DE,求证AB=CD

解,由题得角ABC=角EDC=角ACE=90度因为,角ECD与角ACB互余;角ACB与角CAB互余所以角CAB=角ECD又因为,CD=AB所以三角形EDC全等于三角形ABC所以,AB=CD

已知:如图,AB=AD,CB=CD,AC与BD相交于点O,求证:AC⊥BD

证明:∵AB=ADBC=DCAC=AC∴⊿ABC≌⊿ADC∴∠BAC=∠DAC∴AC⊥BD(等腰三角形的顶角平分线也是底边上的高)

证明题:如图:AB垂直BD,ED垂直BD,AB=CD,BC=DE,求证AC垂直CE

因为AB垂直BD,ED垂直BD,所以角B=角D=90度,又因为AB=CD,BC=DE,所以三角形abc全等于三角形cdb,所以角a=角ecd又因为角a+角acb=90度,所以角ecd+角acb=90度

如图,已知AB∥CD,AB=CD,求证:AC与BD平分.

解:首先证四边形ABCD为平行四边形;因为:AB||CD;AB=CD;所以:四边形ABCD为平行四边形;再有:设AC与BD交于O点;即有

如图AB垂直BD,CD垂直BD且角A+角AEF=180° 求证CD平行EF .

先证明四边形ABCD是距形,利用矩形ABCD性质证明四边形ABEF是矩形,跟住再证明行...

如图,AB垂直BD,CD垂直BD,且角A+角AEF=180度,求证CD//EF

角A+角AEF=180度,∴AB∥EF又AB垂直BD,CD垂直BD,有AB∥CD∴CD∥EF

如图,已知:AB⊥BD,CD⊥BD,∠1+∠2=180°,求证:CD∥EF

因为AB⊥BD,CD⊥BD所以AB//CD因为,∠1+∠2=180°所以AB//EF所以:CD//EF这是我在静心思考后得出的结论,如果不能请追问,我会尽全力帮您解决的~如果您有所不满愿意,请谅解~

已知,如图,AD//BC,且BD垂直CD,BD=CD,AC=BC,求证:AB=BO

图形根据下面的描述自己画出.证明:过A,D分别作AF⊥BC,DE⊥BC,垂足分别为F,E,则四边形AFED为矩形,∴AF=DE,∵BD=CD,DE⊥BC,∠BDC=90°,∴DE=BE=CE=1/2B