1 (x^2 2x 2)dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:02:37
1 (x^2 2x 2)dx
① ∫(2x+4)/(x2 +2x+3) dx; ② ∫(x2)/(1+x2)arctanx dx; ③ 1/[(3√x

1、原式=∫d(x^2+2x+3)/(x^2+2x+3)+2∫dx/(x^2+2x+3)=ln|x^2+2x+3|+2∫dx/[(x+1)^2+2]=ln|x^2+2x+3|+√2∫d[(x+1)/√

∫[(2x)/(x2+1)]dx=?

记g(x)=f(x^2+sin^2x)+f(arctanx)=yg'(x)=f'(x^2+sin^2x)(2x+sin2x)+f'(arctanx)/(x2+1)dy/dx|x=0,即g'(0)代入得

∫﹙√1-x2﹚+x﹚dx x由( -1到1)

∫[-1,1]﹙√1-x2﹚+x﹚dx=∫[-1,1]√﹙1-x2﹚dx+∫[-1,1]xdx=∫[-1,1]√﹙1-x2﹚dx这实际就是半径为1的单位圆,半个圆的面积=π再问:麻烦讲一下怎样看出是单

∫f(1/√x)dx=x2+c,求∫f(x)dx

答:∫f(1/√x)dx=x^2+C对x求导得:f(1/√x)=2xf(1/√x)=2*(√x)^2所以:f(x)=2/x^2所以:∫f(x)dx=∫(2/x^2)dx=-2/x+C

用第二类换元法求∫dx/x根号1-x2

令x=sint,那么dx=costdt,√(1-x^2)=cost所以原积分=∫cost/cost*1/sintdt=∫1/sintdt=ln|1/sint-cott|+C,而1/sint=1/x,c

积分∫x根号(1-x2)dx

原式=∫1/2*√(1-x²)dx²=-1/2*∫(1-x²)^(1/2)d(1-x²)=-1/2*(1-x²)^(3/2)/(3/2)+1=-(1-

求不定积分arctan(1/x)/(1+x2)dx

令1/x=t则原式=∫arctant/(1+1/t²)*(-1/t²)dt=∫-arctant/(1+t²)dt=∫-arctantdarctant=-1/2arctan

s(1+x)/1+x2)dx=?

用分部积分法∫(1+x)/(1+x^2)dx=∫(1+x)darctanx=(1+x)arctanx-∫arctanxdx∫arctanxdx=xarctanx-∫xdarctanx=xarctanx

∫(x2+1)/(x+1)2(x-1) dx

那些2都是平方码?有理函数积分,已经到岛我的空间了,您去看看http://hi.baidu.com/chentanlongshe/album/item/80d45d38bd1fd12e96ddd84e

∫dx/x(x2+1),

令x=tant则dx=sec^2tdt于是∫dx/[x(x^2+1)]=∫sec^2t/[tantsec^2t]dt=∫dt/tant=∫(cost/sint)dt=∫(1/sint)dsint=ln

积分x/√1-x2 dx

∫x/√(1-x²)dx=(1/2)∫1/√(1-x²)d(x²)=-(1/2)∫(1-x²)^(-1/2)d(-x²)=-√(1-x²)+

求不定积分1/x√(1-x2)dx

令x=siny原式=∫1/(sinycosy)*cosydy=∫1/[2cos^2(y/2)]/tan(y/2)dy=∫d(tany/2)/tan(y/2)=ln|tan(y/2)|+C=ln|(1-

1/x2+x dx的不定积分

∫dx/(x^2+x)=∫[1/x-1/(x+1)]dx=ln|x/(x+1)|+C

∫dx/x-1/2+√x2-x+1

用几次换元法,过程会比较简单

求不定积分x-arctanx/1+x2 dx

再答:诚邀您加入百度知道团队“驾驭世界的数学”。

∫(x+x2)/√(1+x2)dx

你将(x+x^2)/(1+x^2)拆成两项x/(1+x^2)+x^2/(1+x^2),这时候你再用换元法做应当是比较容易的.你设x=tan(t)对于前一项就是∫tan(t)dt=-ln(cos(t))

1/x2 dx 的积分

1/x^2=x^(-2)然后套用幂函数的积分公式直接得出结果:-1/x+C

∫(1-x)/√(2x-x2)dx

原式=1/2∫d(2x-x^2)/√(2x-x^2)=√(2x-x^2)+C再问:能详细点吗再答:原式=1/2∫(2-2x)/√(2x-x^2)dx=1/2∫d(2x-x^2)/(2x-x^2)^(1