1 (x^2 2x 2)dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 20:02:37
1、原式=∫d(x^2+2x+3)/(x^2+2x+3)+2∫dx/(x^2+2x+3)=ln|x^2+2x+3|+2∫dx/[(x+1)^2+2]=ln|x^2+2x+3|+√2∫d[(x+1)/√
记g(x)=f(x^2+sin^2x)+f(arctanx)=yg'(x)=f'(x^2+sin^2x)(2x+sin2x)+f'(arctanx)/(x2+1)dy/dx|x=0,即g'(0)代入得
∫[-1,1]﹙√1-x2﹚+x﹚dx=∫[-1,1]√﹙1-x2﹚dx+∫[-1,1]xdx=∫[-1,1]√﹙1-x2﹚dx这实际就是半径为1的单位圆,半个圆的面积=π再问:麻烦讲一下怎样看出是单
答:∫f(1/√x)dx=x^2+C对x求导得:f(1/√x)=2xf(1/√x)=2*(√x)^2所以:f(x)=2/x^2所以:∫f(x)dx=∫(2/x^2)dx=-2/x+C
令x=sint,那么dx=costdt,√(1-x^2)=cost所以原积分=∫cost/cost*1/sintdt=∫1/sintdt=ln|1/sint-cott|+C,而1/sint=1/x,c
原式=∫1/2*√(1-x²)dx²=-1/2*∫(1-x²)^(1/2)d(1-x²)=-1/2*(1-x²)^(3/2)/(3/2)+1=-(1-
令1/x=t则原式=∫arctant/(1+1/t²)*(-1/t²)dt=∫-arctant/(1+t²)dt=∫-arctantdarctant=-1/2arctan
用分部积分法∫(1+x)/(1+x^2)dx=∫(1+x)darctanx=(1+x)arctanx-∫arctanxdx∫arctanxdx=xarctanx-∫xdarctanx=xarctanx
那些2都是平方码?有理函数积分,已经到岛我的空间了,您去看看http://hi.baidu.com/chentanlongshe/album/item/80d45d38bd1fd12e96ddd84e
令x=tant则dx=sec^2tdt于是∫dx/[x(x^2+1)]=∫sec^2t/[tantsec^2t]dt=∫dt/tant=∫(cost/sint)dt=∫(1/sint)dsint=ln
∫x/√(1-x²)dx=(1/2)∫1/√(1-x²)d(x²)=-(1/2)∫(1-x²)^(-1/2)d(-x²)=-√(1-x²)+
令x=siny原式=∫1/(sinycosy)*cosydy=∫1/[2cos^2(y/2)]/tan(y/2)dy=∫d(tany/2)/tan(y/2)=ln|tan(y/2)|+C=ln|(1-
∫dx/(x^2+x)=∫[1/x-1/(x+1)]dx=ln|x/(x+1)|+C
用几次换元法,过程会比较简单
再答:诚邀您加入百度知道团队“驾驭世界的数学”。
你将(x+x^2)/(1+x^2)拆成两项x/(1+x^2)+x^2/(1+x^2),这时候你再用换元法做应当是比较容易的.你设x=tan(t)对于前一项就是∫tan(t)dt=-ln(cos(t))
1/x^2=x^(-2)然后套用幂函数的积分公式直接得出结果:-1/x+C
原式=1/2∫d(2x-x^2)/√(2x-x^2)=√(2x-x^2)+C再问:能详细点吗再答:原式=1/2∫(2-2x)/√(2x-x^2)dx=1/2∫d(2x-x^2)/(2x-x^2)^(1