如图ab是直径 c在ab延长线上 cd与圆o 若ce平方等于de乘ae
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 04:40:36
(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠
(1)连接OC,因为角DB0=角COP,又因为角COP=2倍角CBO,所以角DBC=角CBO.可以证明三角形DBC与三角形CBA相似,可以得到DB:BC=CB:BA,=>BC^2=BD*BA(2)连接
1连结ODOC三边相等可证明三角形PCO全等POD从而证直角2连结CB角ACB=90AC=PC角CAP=角CPA三角形ACB全等三角形PCO得AB=OP2OB=OB+BPOB=1再问:PC为什么等于P
过点O分别作PC、PE的垂线,垂足为M、N.因为∠APC=∠APE,OM⊥PC,ON⊥PE,所以OM=ON(角平分线的性质).所以,CD=EF(垂径定理的推论).
∠AOD=2∠AQD=∠CQD所以∠EOD=∠PQE,又∠OED=∠QEP所以∠ODE=∠QPE,即∠OPC=∠ODQ再问:∠AOD=2∠AQD=∠CQD为什么2∠AQD=∠CQD再答:弧CAD=2弧
连接OC∠CAB=30°OA=OC所以∠COD=60°又OB=BD所以OD=2OC所以OC垂直于CD所以DC是圆O的切线
连接OC.AB为直径,C为弧AB的中点,则:OC⊥AB,OC=AO=OB=3;BF=OB-OF=2.设BD=X,则DE=DF=2+X.DE为圆的切线,则:DE²=BD*AD,(2+X)
证明:连接OC,BC,∵PB=12AB,OB=12AB,∴PB=OB.∵∠BOC=2∠BAC=60°,OB=OC,∴CB=OB,∠CBO=60°,(4分)∴∠P+∠BCP=∠CBO=60°.∴∠P=∠
(1)证明:连接FA.∵AB为圆O直径,所以∠AFB=90°,∴∠AFD+∠DFB=90°,∠CFA+∠BFE=90°.∵弦CD与直径AB垂直于H,∴由垂径定理,得弧CA=弧DA,∴∠CFA=DFA.
∠ACD=120°∠OCD=90°△ABC为直角三角形AB为直径∠ACB=90°∠ACO=∠ACD-∠ACB=30°∠BCD=30°∠CAB=∠ACO=30°∠D=180°-∠CAD-∠DCA=180
∵AC=CD∴∠CAB=∠CDB=30°连接OC∵OA=OC∴∠CAB=∠OCA=30°∴∠COD=60°∴∠OCD=90°C在圆O上∴DC是圆O的切线
∵CD⊥ODDF⊥AB与点E∴∠CDO=∠DEC=90∵在三角形CDE和三角形CDO中∠CDO=∠DEC=90∠DCE=∠DCO∴△CDE∽△CDO∴∠CDE=∠DOC∵∠DOC=∠ODB+∠OBD又
连接OC,∵AB是圆O的直径,P在AB的延长线上,PD切圆O于点C.圆O半径为3,OP=2,∴PB=2-3,PA=2+3,∴PC2=PB?PA=(2?3)(2+3)=1,∴PC=1.在Rt△OCP中,
(1)证明:连接OD.∵直线CD与⊙O相切于点D,∴OD⊥CD,∠CDO=90°,∠CDE+∠ODE=90°.又∵DF⊥AB,∴∠DEO=∠DEC=90°.∴∠EOD+∠ODE=90°,∴∠CDE=∠
(2009•路北区三模)如图:AB为⊙O的直径,C是⊙O上一点,D在AB的延长线上,且∠DCB=∠A.(1)求证:CD是⊙O的切线;(2)如果:∠D=30°,BD=10,求:⊙O的半径.&
如右图所示,连接BC,∵AB是直径,∴∠BCA=90°,又∵∠A=25°,∴∠CBA=90°-25°=65°,∵DC是切线,∴∠BCD=∠A=25°,∴∠D=∠CBA-∠BCD=65°-25°=40°
连接OD.CD与圆O切于D,则OD垂直CD,∠COD=90°-∠C=72°.∵OD=OA.∴∠ADO=∠DAO=(1/2)∠COD=36°.所以,∠CDA=∠ADO+∠CDO=126°.
证明:连接OC、BC,∵AB是⊙O的直径,∴∠ACB=90°.∵∠CAB=30°,∴∠ABC=60°.∵OB=OC,∴△OBC为等边三角形,∴BC=OB=BD,△BCD为等腰三角形,∠CBD=120°
∠CMP的大小不变,∠CMP=45°连接OC,交PM于D∵PC是⊙O的切线∴∠OCP=90°∵PM平分∠APC∴∠MPC=1/2∠APC∴∠CDP=90°-1/2∠APC∵∠CMP=∠CDP-∠ACO