如图ab是圆o的直径ab=ac 点d,e在园o上 求证bd等于de
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 15:46:39
1)由圆的性质知:直径所对角为90°则∠BPA=90°,∠FAP=90°那么∠PFA+∠FPA=90°,∠BPF+∠FPA=90°则∠PFA=∠BPF(内错角相等)所以AF∥BE2)显然∠PAC=∠C
的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°
证明:连接AD∵AB是圆O的直径∴∠ADB=90°=∠ADE∵D是弧BC的中点∴弧BD=弧CD∴∠CAD=∠BAD∵AD=AD∴△AED≌△ABD∴AE=AB再问:d点是be的中点吗、辅助线是怎么做的
证明:连接OC∵AC‖OD∴∠A=∠BOD,∠C=∠COD∵OA=OC∴∠A=∠C∴∠COD=∠BOD∴弧CD=弧BD
连接OD因为∠AOC=∠EOB,所以弧AC=弧EB因为AB//CD,所以∠EOB=∠ECD因为∠ECD=1/2∠EOD,所以∠EOB=∠BOD,所以弧EB=弧DB所以弧EB=弧AC=弧BD
如果知道关于15°角的三角比值的话,就很方便了~AB=8∠ADB=90°AD=BE=ABxsin15=8x(√6/4-√2/4)BD=ABxcos15=8x((√6/4+√2/4)DE=BD-AD=4
如图∵AB是⊙O的直径∴∠AEB=90°,即AE⊥BC∴∠BAE+∠ABE=90°又∵CD⊥AB∴∠BCD+∠CBD=90°∴∠BAE=∠BCD又∠ADH=∠CDB∴△AHD∽△CBD∵O点是圆心,C
如图所示:∵AB是圆O的直径又∵AC、AD是圆O的弦 且直径AB平分AC、AD所成的夹角∠CAD(已知条件)连接CO、DO 组成两三角形ACO、三角形ADO(只要证明 两
因为AB是直径所以弧ACB=弧ADB因为弧AC=弧AD所以弧BC=弧BD所以角CAB=角DAB所以AB平分角CAD2、因为AB平分角CAD所以角CAB=角DAB所以弧BC=弧BD因为AB是直径所以弧A
所以∠AOC=2∠ACD.证毕.如图,AB是圆O的直径,AC是弦,CD是圆O所以∠AOC=2∠ACD.证毕.赞同0|评论2011-12-416:57热心网友.
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
:(1)求证:CD=BD,证明:∵AC∥OD,∴∠1=∠2.∵OA=OD,∴∠2=∠3.∴∠1=∠3.所以狐等∴CD=BD
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
由于同弧所对的圆心角和圆周角关系可得∵∠ABD=60,∴∠AOD=120故,∠COD=∠COB=60.∴阴影面积=1/3圆的面积(因为120°=1/3*360°).又因为AB=2√3,所以半径=2(因
(1)连接BC∵AB是直径∴∠ACB=90º∵AB=2、AC=√3∴BC=1∴∠A=30º(2)连接OC∵CD⊥AB、AB是直径∴∠BOC=2∠A=60º∴B⌒C=60/
1、连接BC,则∠ACB=90°,∠ABC=∠F,∵∠ACD+∠CAD=90°,∠CAD+∠ABC=90°,∴∠ACD=∠ABC.∴∠ACD=∠F.2、由(1)得出的∠ACD=∠F,又∵∠CAG=∠F
证:连接OC∵AC‖DE∴∠BOE=∠OAC,∠OCA=∠COE∵OA=OC∴∠OAC=∠OCA∴∠BOE=∠COE∴弧BE=弧CE
AB是圆O的直径,ADB=90,D是BE的中点中垂线AE=AB