如图AB是圆O的直径,直线AD与圆O相切于点A点C在圆上,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:07:56
∵BC是圆O的切线∴角ABC=90°在△OCB和△OBP中得∠C=∠DBA∵AB是圆O的直径∴∠ADB是直角∵AD平行于OC∴∠DAB=∠BOC∴△ADB∽△OBC∴OC/AB=OB/AD∵OB=1,
证明(1):∵AD=DC,DE=DE,∠ADE=∠CDE=90度,∴△ADE≌△CDE(SAS),∴AE=CE.∴∠2=∠3,∴∠F=∠2=∠3.又∵∠2+∠3+∠4=90=∠1+∠2+∠F,∴∠1=
连接BC∵OA=OC∴∠BAC=∠ACO∵AC平分∠DAB∴∠DAC=∠BAC∴∠DAC=∠ACO∴AD∥OC∵CD切圆O于C∴OC⊥CD∴AD⊥CD∴∠ADC=90∵直径AB∴∠ACB=90∴△AC
证明:∵C是弧AD的中点∴弧AC=弧CD∴∠ABC=∠CBD(等弧对等角)∵AB是⊙O的直径∴∠ADB=90°则∠EFC=∠BFD=90°-∠CBD∵CM⊥AB∴∠CHB=90°则∠ECF=90°-∠
连BC和OC,∵△ABC和△ACD相似,∴AB比AC=CA比AD,∵AB=4,AD=1,∴AC²=4,∴AC=2∵∠DAC=∠BAC,∠BAC=∠OCA,∴∠OCD=90,四边形OCFA为直
证明:过点O作OD⊥DC∵∠ADE=60°∴∠ADC=120°又∵∠C=30°∴∠A=30°∴∠DOC=60°∴∠ODC=180°-60°-30°=90°即OD⊥EC∴CD是圆O的切线
连接OC,∵直线l与⊙O相切于点C,∴OC⊥CD;又∵AD⊥CD,∴AD∥OC,∴∠DAC=∠ACO;又∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.
第1问应该是求证CE是圆O切线,问者应该证明了.连接BF,交OC于M∵AB是圆O的直径,AB=10∴∠AFB=90°,OB=OC=5∵AD⊥CE,CE是圆O切线∴BF∥CE,BF⊥OC∴BM=FM,四
1.连接OC,切线垂直,∵平分角,∴∠CAD=∠BAC,∵∠OAC=∠OCA.∴∠CAD=∠OCA,∴OC∥AD,∴∠ADC=∠OCD=90°即AD⊥CD.2.有一便于理解的方法:连接BC,过点C作C
如图所示:∵AB是圆O的直径又∵AC、AD是圆O的弦 且直径AB平分AC、AD所成的夹角∠CAD(已知条件)连接CO、DO 组成两三角形ACO、三角形ADO(只要证明 两
1.连接ODAO=OD,所以有:∠OAD=∠ODAAD平分∠BAC,有:∠CAD=∠BAD那么:∠DOB=∠OAD+∠ODA=2∠OAD=∠BAD+∠CAD=∠CAB得到:DO平行AC再因为DE垂直A
因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角
连接EO因为CE平行AB,CO=EO得角OCE=OEC=DOA=AOE因为EO=OD,角DOA=AOE,AO为公共边所以三角形DOA与EOA全等则AE=AD再问:没有了很完美撒~顺便问一句……你认识E
证明:(1)连接BC,OC∵AB是⊙O的直径∴∠ACB=90°∵AD⊥CD∴∠ADC=90°∴∠ACB=∠ADC∵OA=OC∴∠OCA=∠OAC∵直线CD切⊙O于点C∴∠OCA+∠ACD=90°又∠O
证明:1.连接OC∵OA,OC是圆O的半径∴∠CAO=∠ACO①又已知AC平分角DAB交圆O于点C则∠CAD=∠CAO②由①②得∠CAD=∠ACO则OC//AD③∵直线CD垂直AD④∴由③④得直线CD
∵AD是直径∴弧ABD=弧ACD∵AB=AC∴弧AB=弧AC∴弧ABD-弧AB=弧ACD-弧AC即弧BD=弧CD∴BD=CD
应该是∠CAD=∠ABC吧证明:∵AB是圆的直径∴∠C=90°∠B+∠CAB=90°又∠CAD=∠B∴∠CAD+∠CAB=90°∠DAB=90°即OA⊥ADOA是半径∴AD与圆O相切
因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=