如图ab是圆o上两点∠aob=120°c是弧ab的中点求证四边形oacb是菱形
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:32:51
连接DO∵A,B是圆O上的点∴AO=BO又∵点D为劣弧AB的中点∴弧AD=弧BD∵AD=BD∠AOD=∠DOB=60度又∵OD是半径∴AO=DO,BO=DO∴△AOD和△DOB是等边三角形∴AO=DO
连结DB,则∠E=∠BDC,由同弧所对圆周角为圆心角的一半,得,弧ACB所对圆周角∠ADB是其所对圆心角∠AOB(注意,是大角)的一半,即∠D+∠E=∠ADB=1/2∠AOB(大角)=1/2(360°
证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?
1.连接OC,则∠AOC=60°∵OC=OB∴△AOC是等边三角形同理△BOC是等边三角形∴AOBC是菱形.
∵∠AOB=120°,弧AC=弧BC,∴∠COA=∠COB=60°,∵OA=OC=OB,∴ΔOAC与ΔOBC是等边三角形,∴OA=OB=AC=BC,∴四边形OACB是菱形.
解题思路:连OC,由C是弧的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱
解题思路:连OC,由C是弧AB的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根
∵C为弧AB中点∴弧AC=弧BC∴∠AOC=∠BOC=½∠AOB=60°,AC=BC又∵AO=BO=CO∴△AOC,△BOC为等边三角形∴∠ACO=∠BOC,∠AOC=∠BCO∴AC∥OB,
题目中C是短弧AB的中点证明:因为C是弧AB的中点所以弧AC=弧BC所以AC=BC∠AOC=∠COB(在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦中,有一组量相等,那么它们所对应的其余各组量都
显然有:OA=OB,∴∠OAC=∠OBD.∵弧AE=弧BF,∴∠AOC=∠BOD.由∠AOC=∠BOD、∠OAC=∠OBD、OA=OB,得:△OAC≌△OBD,∴AC=BD.
(1)延长CO交圆于E,连接BE,那么BE=AC=CD易知BD//CE故BD//OC(2)COB面积=1/2*OC*OC高BCD面积=1/2*BD*BD高因为BD//OCBD高=OC高又COB面积=B
连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形
1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就
1,-5/242设函数为y=ax^2+bx+c,已知三点A(3,0),B(5/12,-5/24),O(0.0),代入式子得y=6/31x^2-18/31x,顶点C(3/2,-27/62)3,设直线BC
证明:连OC,如图,∵C是弧AB的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.
∠D=1/2∠AOC∠E=1/2∠BOC故∠D+∠E=1/2∠AOC+1/2∠BOC=1/2(∠AOC+∠BOC)=1/2(360-∠AOB)=1/2(360-M)
∵∠ACB与∠AOB同对着AB,而∠ACB为圆周角,∠AOB为圆心角;∴∠ACB=12∠AOB=40°.故选A.
1)A、O、B为直线上的点,所以∠AOB为平角.∠DOE=90°∠AOE=48°∴∠BOD=180°-90°-48°=42°2)∠COD=∠COB+∠BOD∠AOB=180°,OC平分∠AOB,∴∠C
证明:连接CO,∵BC=OB,∴∠1=∠2,∵∠AOB=90°,∴∠2+∠4=90°,∵OD⊥AB,∴∠1+∠3=90°,∴∠3=∠4,在△CEO和△CDO中EO=DO∠3=∠4CO=CO,∴△CEO
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60