如图ab是半圆o上的两点,角AOB=120,c是AB弧的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 23:45:21
如图ab是半圆o上的两点,角AOB=120,c是AB弧的中点
如图,AB为圆O的直径,C、D是半圆上的两点,且AC=CD=DB,AB=10cm,求AC的长兵证明CD平行于AB

证明:连接C、O;连接D、O因为AC=CD=DB,AO=CO=DO=BO所以△AOC全等于△COD全等于△DOB所以∠AOC=∠COD=∠DOB=60°所以△AOC、△COD、△DOB都是等边三角形所

如图,AB是半圆O 的直径,点c是圆O上一点,连接ac,ab

的延长线上取一点E,连接EB,使∠OEB=∠ABC.(1)求证:BE是⊙O的切线(1)证明:∵AB是半圆O的直径,∴∠ACB=90°,∵ODAC,∴∠EDB=90°

如图,AB是圆心O的直径,AB=8CM,C,D是半圆上

连接OC,交AD于E.因为C、D是三等分点,所以OC垂直AD,平分AD.所以三角形ACE全等于三角形ODE.阴影部分面积S=扇形OCD的面积圆心角60度,半径4CM,代公式得面积S=8pai/3

如图,AB是半圆O的直径,C是半圆O上异于A,B的点,CD⊥AB,垂足为D,已知AD=4,DB=9,求CB的长.

因为AD+DB=AB=13所以OA=7.5=半径联结oc,oc为半径=7.5DO=OA-AD=3.5勾股出CD再勾股CB

已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.

证明:作GH⊥AB,连接EO.∵EF⊥AB,EG⊥CO,∴∠EFO=∠EGO=90°,∴G、O、F、E四点共圆,所以∠GFH=∠OEG,又∵∠GHF=∠EGO,∴△GHF∽△OGE,∵CD⊥AB,GH

1.已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=EF

由OFEG共圆(OE为直径),由正弦定理很容易证明CD=GF不过要求初二就复杂了四点共圆学了的话可以这样:过G作GH⊥AB于H,连OE易知GH‖CD,故有GH/CD=OG/OC=OG/OE.(1)EG

已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF

证明:因为EF垂直于AB,EG垂直于CO,所以角OCE+角OFE=180度,所以四点O,C,E,F共圆,连结OE.则OE是圆OCEF的直径,因为CD垂直于AB,所以角CDO是直角所以OC是圆OCD的直

已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.求证:CD=GF

证明:连结CE,延长CO至H使CO=OH,连结FH.∵CO=OH且C,O,H在一条直线上∴CH是直径∴∠CEH=Rt∠而EF⊥AB∴EF=FH(垂径定理)又∵EG⊥CO∴△EGH是Rt△而F为中点∴G

急!如图 ab是半圆o的直径,C为圆上一点,过C作半圆的切线

①过C作半圆的切线,∠COB=90度;∠DAC=∠CAB,OA=OC,∠OCA=∠CAB∠COB=∠CAO+∠OCA=∠CAB+∠CAB=∠CAB+∠DAC=∠DAB,OC‖AD,∠ADC=90度;A

如图,AD是半圆O的直径,AD等于4,B、C为半圆上两点,弦AB=BC=1,则 CD的长为多少?

连接AC,OB,OD易证三角形ABC相似于三角形BOD所以AB/BO=AC/BD即AC=BD*AB/BO因为三角形ABD是直角三角形所以BD=√(AD^2-AB^2)=√15所以AC=BD*AB/BO

已知:如图,AB是半圆O的直径,C为AB上一点,AC为半圆O的直径,BD切半圆O/于点D,CE⊥AB交半圆O于点F.

1)连接DO'角O'DB是直角,设大圆半径R小圆半径r,则BD平方=O'B平方-DO'平方即为BD平方=(2R-r)平方-r平方整理得BD平方=4R平方-4Rr因为CE垂直AB,可用射影定理得EB平方

如图,AB是半圆O的直径,AB=4,C、D为半圆O上的两点,且AC=CD=1,求BD.

你能把图给我吗?是初三的吧再问:,。。。再答:我知道了我做的和下边那位的一样很麻烦的如果你是初三的那就这样做吧连接AD,OC交与E点,则角AEC=90度=∠CED可得方程组AE²+CE&su

如图,A,B是圆心O上的两点,角AOB=120度,C是AB弧的中点,求证四边形DACB是菱形

连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形

如图,AB为半圆直径,C、D是AB上异于A、B的任意两点,引EC⊥AB交半圆于E,连结DE,作CF⊥DE,垂足为F,CF

你应该也学了正弦定理了吧,我是利用三角形面积公式S=1/2absinCEG/GA=(1/2*EC*GC*sin∠ECG)/(1/2*AC*GC*sin∠ACG)=(EC*sin∠ECG)/(AC*si

如图,AB是半圆O的直径,C为半圆上一点,∠CAB的角平分线AE交BC于点D,交半圆O于点E.若AB=10,tan∠CA

∵AB是半圆O的直径,∴∠C=90°.∵tan∠CAB=34,∴BCAC=34.设AC=4k,BC=3k,∵AC2+BC2=AB2,AB=10,∴(4k)2+(3k)2=100.∴k1=2,k2=-2

如图,AB是半圆O的直径,AB=4,C、D为半圆O上的亮点,且AC=CD=1.求BD

这个我来回答!哈哈答案是3.5把AC延长和bd的延长线相交,交点为e可以证明三角形cde和三角形odc是相似的,得出de=0.5然后be=ab=4,然后就有答案了

如图,AB是○O的一条固定直径,它把○O分成上、下两个半圆,自上半圆一点C

连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3,∴∠2=∠3,∵OP

如图,AB是半圆O的直径,过半圆O上的一点D分别作AB的垂线与半圆O的切线,交直线AB于点E与点C,

帮你找到原题了,http://www.qiujieda.com/math/115438/真的一模一样以后遇到初中数理化难题都可以来这个网站搜搜寻找思路,题库超大,没有原题也有同类题,界面很科学哦,也可

已知:如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作作半圆O的切线分别交过A、B两点的切线

2002武汉的如图,以定线段AB为直径作半圆O,P为半圆上任意一点(异于A、B),过点P作半圆O的切线分别交过A、B两点的切线于D、C,AC、BD相交于点N,