如图ab为圆o上两点角aob等于120度c是ab弧的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 10:10:05
如图ab为圆o上两点角aob等于120度c是ab弧的中点
如图,AB为圆O的直径,C,D为圆O上的两点,且OC评分∠ACD,CF⊥DB于F

证明:(1)作OM⊥AC于点M,ON⊥CD于点N∵OC是∠ACD的平分线∴ON=OM∴AC=CD(2)作CG⊥CD,交DB的延长线于点G∵AB是直径∴∠ACB=90°=∠DCG∵∠A=∠D,CA=CD

如图,AB为圆O的直径,C,D为圆O上的两点,且OC平分∠ACD,CF⊥DB于F

证明:(1)作OM⊥AC于点M,ON⊥CD于点N∵OC是∠ACD的平分线∴ON=OM∴AC=CD(2)作CG⊥CD,交DB的延长线于点G∵AB是直径∴∠ACB=90°=∠DCG∵∠A=∠D,CA=CD

如图,直线y=根号3分之3x+1与x轴,y轴分别交与A,B两点.把三角形aob以直线ab为轴翻着使点o落在平面上的

当Y=0时,X=-1/3.当X=0时Y=√3/3,所以A点坐标是(-1/3,0),B点坐标是(0,√3/3)所以∠BAO=60°,∠ABO=30°,因为△ACB≌△AOB,所以BC=OB=√3/3,当

如图,在圆O中,角aob的度数为m,C是弧ACB上一点,DE是弧AB上不同的两点,则角D+角E的度数是

连结DB,则∠E=∠BDC,由同弧所对圆周角为圆心角的一半,得,弧ACB所对圆周角∠ADB是其所对圆心角∠AOB(注意,是大角)的一半,即∠D+∠E=∠ADB=1/2∠AOB(大角)=1/2(360°

如图,A,B是圆O上的两点,∠AOB=120°C是弧AB的中点,求证四边形OBCB是菱形

证明:连接OC∵C是弧AB的中点,∠AOB=120°∴∠AOC=60°∴△AOC是等边三角形∴OA=AC同理可得BC=OB∴OA=OB=BC=AC∴四边形OACB是菱形再问:你确定你没有看错图?

如图,A,B是圆O上的两点,∠AOB=120°,C是弧AB的中点,求证四边形OABC是菱形.

1.连接OC,则∠AOC=60°∵OC=OB∴△AOC是等边三角形同理△BOC是等边三角形∴AOBC是菱形.

如图,A,B是⊙O上的两点,∠AOB=120°,C是⌒AB的中点,求证四边形OACB是菱形.

∵∠AOB=120°,弧AC=弧BC,∴∠COA=∠COB=60°,∵OA=OC=OB,∴ΔOAC与ΔOBC是等边三角形,∴OA=OB=AC=BC,∴四边形OACB是菱形.

如图,A,B是圆O上的两点,∠AOB=120°,C是弧AB的中点,求证四边形OABC是菱形

解题思路:连OC,由C是弧的中点,∠AOB=l20°,根据在同圆或等圆中,相等的弧所对的圆心角相等得到∠AOC=∠BOC=60°,易得△OAC和△OBC都是等边三角形,则AC=OA=OB=BC,根据菱

如图,ab是圆o上的两点,角aob等于一百二十度,c是弧ab的中点.求证四边形四菱形.

∵C为弧AB中点∴弧AC=弧BC∴∠AOC=∠BOC=½∠AOB=60°,AC=BC又∵AO=BO=CO∴△AOC,△BOC为等边三角形∴∠ACO=∠BOC,∠AOC=∠BCO∴AC∥OB,

如图,A,B是圆点O上的两点,∠AOB=120°,C是AB弧的中点,求证:四边形OACB是菱形.

题目中C是短弧AB的中点证明:因为C是弧AB的中点所以弧AC=弧BC所以AC=BC∠AOC=∠COB(在同圆或等圆中,如果①两个圆心角,②两条弧,③两条弦中,有一组量相等,那么它们所对应的其余各组量都

如图,三角形ABC的顶点在圆O上,E F分别为弧AB,弧AC的中点,EF交AB AC于D G两点,小明说三角形ADG是等

小明说的对.证明:连接AE,AF.∵弧AE=弧BE;弧AF=弧CF.∴∠AFG=∠EAD;∠AED=∠FAC.故:∠AFG+∠FAC=∠EAD+∠AED.即:∠AGD=∠ADG(三角形外角的性质)∴A

如图,圆O是以原点O为圆心,半径为根号2的圆,直线AB交坐标轴于A,B两点,OB=4,tan角BAO=2,P为直线AB上

1、不知道A在x轴上,还是y轴上我只能猜A在x轴上且在正半轴,B在y轴上了,且在正半轴.OB=4tan∠BAO=2则OA=2B坐标(0,4)A坐标(2,0)当角CPD=90度时,那么四边形CODP是正

如图ab是圆o的弦半径oa等于二十厘米,角aob等120度求三角形aob的面积

100倍根号3再问:过程?再答:连接ab交oc再问:还有呢?再答:oa=ob所以角a等于角b等于30度再答:假设ab交oc于q再问:能否一下把过程打给我?再答:oc是自己画的辅助线吧,为角o的平分线再

如图,A,B是圆心O上的两点,角AOB=120度,C是AB弧的中点,求证四边形DACB是菱形

连接OC,可知角AOC=角BOC=60°所以AO=AC=BO=BD所以四边形OACB是菱形

如图平面直角坐标系中,O为原点已知AB两点,A(3,0)B(5/12,m),tan∠AOB=1/2

1,-5/242设函数为y=ax^2+bx+c,已知三点A(3,0),B(5/12,-5/24),O(0.0),代入式子得y=6/31x^2-18/31x,顶点C(3/2,-27/62)3,设直线BC

如图A、B是⊙O上的两点,∠AOB=l20°,C是弧AB的中点,求证四边形OACB是菱形.

证明:连OC,如图,∵C是弧AB的中点,∠AOB=l20°∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△OAC和△OBC都是等边三角形,∴AC=OA=OB=BC,∴四边形OACB是菱形.

如图,在圆O中∠AOB度数为m,C是弧ABC上的一点,D、E是弧AB上不同的两点(不与AB

∠D=1/2∠AOC∠E=1/2∠BOC故∠D+∠E=1/2∠AOC+1/2∠BOC=1/2(∠AOC+∠BOC)=1/2(360-∠AOB)=1/2(360-M)

如图,在半径为6的圆O中,弦AB长为6求圆心角角AOB的度数和点O到AB的距离

△AOB中OA=OB=AB∴△AOB是等边三角形∠AOB=60°∴点o到ab的距离:3√3(等边三角形的高)

如图,已知△AOB中,∠AOB=90°,OD⊥AB于点D.以点O为圆心,OD为半径的圆交OA于点E,在BA上截取BC=O

证明:连接CO,∵BC=OB,∴∠1=∠2,∵∠AOB=90°,∴∠2+∠4=90°,∵OD⊥AB,∴∠1+∠3=90°,∴∠3=∠4,在△CEO和△CDO中EO=DO∠3=∠4CO=CO,∴△CEO