如图abc内接于圆oad为角bac的平分线

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 20:13:19
如图abc内接于圆oad为角bac的平分线
已知,如图,△ABC内接于园O,AB为非直径的弦,∠CAE=∠B,求证:AE与圆O相切于点A

连接CO,并延长交圆于D点,连接AD和AO.得出CD为圆的直径,∠OAC=∠OCA,∠B=∠ADC因为CD为直径,所以∠ADC+∠OCA=90°.又因为∠B=∠CAE,∠B=∠ADC,∠OAC=∠OC

如图,三角形ABC内接于圆O,弦AD垂直AB交BC于点E,过点B作圆O的切线交DA的延长线于点F,且角ABF=角ABC.

(1)∵∠ACB=∠ABF=∠ABC,(圆周角等于弦切角)∴AB=AC(底角相等的三角形是等腰三角形).(2)连接DB,∵∠ADB=∠ABF=∠ABC,∴△ADB∽△ABE.∵AD=4,cos∠ABF

已知:如图,三角形ABC内接于圆O,D为BS弧的中点,AE垂直BC于E,求证:AD平分角OAE

我也是刚刚做到这道题其实只要连接OD,OA=OD,所以等腰三角形,两角相等又D是弧BC中点,根据垂径定理推论,可知OD所在的直径垂直BC,又AE垂直BC于E,有两个直角,所以平行...接下来会了吧~~

如图,三角形ABC内接于圆O

关于如图,三角形ABC内接于圆O

如图,圆O内切于三角形ABC,切点分别为D、E、F,若角B为50度,角C为60度

问题能完整点不再问:再问:第6再答:C再答:不客气给个好评就行

如图 △ABC内接于圆OAD平分∠BAC延长BC到P 使PD=PA求证:PA为圆O的切线

延长AO交园边于点K,连接KC并延长交AP于E\x09\x09\x09\x09∵∠B=∠K(两角都是弦AC的圆周角相等)\x09\x09\x09\x09∵∠PDA=∠PAD ( P

已知,如图.三角形ABc内接于圆o,AB为直径.角CBA的平分线交Ac于点F.,交圆o于点D,DE⊥AB(1):求证,P

(1)证明:∵AB是⊙O的直径∴∠ADB=∠ACB=90°∵DE⊥AB∴∠DEA=90°∴∠ADE=∠ABD(都是∠DAE的余角)∵∠DAC=∠DBC(同弧所对的圆周角相等)∠DBC=∠ABD(BD平

已知:如图,三角形ABC内接于圆O,AB为直径,∠CBA的平分线交AC于点F,交圆O于点D

图呢?再问:自己画啊!再答:你说如图。。。再问:不懂就别答了。哼再答:-.-可证:PD=PA,PD=PF。所以PA=PF=15/4又可证:△FDA和△ADB相似所以:AD/DB=AF/AB即:tan∠

如图,已知圆O的半径为1,锐角三角形ABC内接于圆O,BD垂直AC于点D,OM垂直AB于点M则sin角CBD的值等于多少

B再问:为什么选B,详细过程,非常感谢再答:连接BO,AB,有垂径定理的,∠MOB=1/2∠AOB,因为∠C=1/2∠AOB,所以,∠C=∠MOB,因为∠C与∠CBD互余,∠MOB与∠MBO互余,所以

已知:如图,△ABC内接于圆O,AB为直径,∠CBA的角平分线交AC于点F,交圆O于点D,DE⊥AB于E,且交AC于P,

(1)证明:∵AB为直径,∴∠ACB=∠ADB=90°∵BD平分∠ABC∴∠CBF=∠FBA∵∠DAF+∠AFD=90°∠CBF+∠BFC=90°∠AFD=∠BFC(对顶角相等)∴∠DAF=∠CBF=

如图,三角形abc是园o的内接△,直径gh垂直ab,交ac与d,gh,bc的延长线交与e,求角oad=角e

1.如图(图略),∵⊙O中,GH是直径,GH⊥AB,∴弧AH=弧AB,∴∠AOH==(1/2)AOB,∵∠E=∠ACB-∠EDC,又∠ACB=(1/2)AOB=∠AOH,∠EDC=∠ADH,∴∠E=∠

如图△ABC内接与圆o,AD垂直于bc于

角C等于角E,易证直角三角形ADC与直角三角形ABE相似,AD:AB=AC:AE,AD:6=8:10,AD=4.8

三角形ABC内接于圆O,角B=30度,AC=2,则圆O半径长为?

用正弦定理AC/sin30度=2RR为半径,R=2

已知,如图,锐角三角形ABC内接于○o

连结OD,∵DE是⊙O的切线,∴DE⊥OD,又DE∥BC,∴OD⊥BD,∴OD平分弧BE,即:弧BD=弧DC,∴∠BAD=∠DAE.又DE∥BC,∠ACB=∠AED,∵∠ACB=ADB,∴∠ADB=∠

如图已知,三角形ABC内接于圆o,弦BC所对的劣弧为120度角ABC,角ACB的平分线BD,CE分别交AC于D交AB于E

∵劣弧BC的度数为120°∴∠BAC=60°∴∠ABC+∠ACB=120°∵BD平分∠ABC,CE平分∠ACB∴∠CBD+∠ECB=12(∠ABC+∠ACB)=60°∴∠CFD=60°∴∠BFE=60

已知三角形ABC内接于圆O,AD垂直于BC,D为垂足,AE平分∠OAD交圆O于点E.求证:弧CE=弧BE

连结OE∵OA=OE∴∠E=∠OAE∵AE平分∠OAD∴∠E=∠OAE=∠DAE∴OE‖AD∵AD⊥BC∴OE⊥BC∴弧CE=弧BE

如图三角形ABc内接于圆O且AB为圆0的直径角AcB的平分线交圆

第一问很好证.∵∠BCD=∠BAD,∠BCD=∠ACD∴∠BAD=∠ACD又PD圆的切线∴∠PDA=∠ACD∴∠PDA=∠BAD∴DP∥AB

如图,等边三角形ABC内接于圆O,边长为4cm,求图中阴影部分的面积

三角形的高为2倍根号3,内切圆的半径是2倍根号3/3,则阴影面积为12倍根号3-4π/3