如图abcd是圆行o上的四个点ab等于bc bd交于ac于点e
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:09:30
设X,Y分别为矩形两边长,则x2+y2=64,设矩形面积z=xy,则下面图片,x2为x的平方,其他后面的2都是平方,丫丫的.公式太恶心人了,答案是32,你自己做吧..这点应该会吧..
证明:延长BO交圆O于M,连接AM,DM.BM为直径,则∠BDM=90º,DM⊥BD;又AC⊥BD.∴AC∥DM,则弧AD=弧CM.故弧ADM=弧CMD,得AM=CD.∵OF⊥AB.∴BF=
连接EO,FO;在三角形AOE和COF中;角OCF=OAE,AO=CO,AE=CF,则两三角形全等;角AOE=FOC;因E、F分别在AC的两侧,所以两角相等必是对顶角,则E、O、F必在一条线上;看在又
答案给的方法没有缺陷答案应该是设Q为CC1中点然后,证明平面D1BQ∥平面PAO你担心的是CC1上还有别的点Q'使得平面D1BQ'∥平面PAO,如果存在的话,平面D1BQ‘∥平面PAO,D1BQ∥平面
证明:连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴CD与⊙O相切.
连接PD①∵AB=ADAP=AP∠BAP=∠DAP=45°∴△APB≌△APD∴∠ABP=∠ADP∠PBC=∠PDF∵PE⊥PB∴在四边形BCEP中∠PBC+∠PEC=180°∵∠PEF+∠PEC=1
过点O作OF⊥CD于点F,反向延长OF交AB于点E,连接OC,OB,∵AB∥CD,∴OE⊥AB,OF⊥CD,∴BE=12AB=12×6=3,CF=12CD=12×8=4,∵⊙O的半径为5,∴OE=OB
你说的那个方法中“ABCD为等腰梯形”的推导步骤是不成立的. 如图,做OG⊥DC于点G,由于,圆心到弦的垂线平分该弦,并平分该弦对应的圆心角;同弧的圆心角是圆周角的两倍:OF⊥弦AB,所以∠
(1)真命题:①AC⊥BD,②AC平分对角线BD,③AD//BC证明:∵AD//BC∴∠1=∠2,∠3=∠4∵AC平分BD∴OD=OB∴△AOD≌△COB(AAS)∴AD=BC∴四边形ABCD是平行四
证明:在AC上取一点E,使∠AED=∠BCD∵A,B,C,D四点共圆∴∠DAC=∠DBC∴⊿DAE∽⊿DBC(AA‘)∴AD/BD=AE/BC∴AD×BC=BD×AE.①∵∠DEC=180º
证明:因为矩形ABCD中,OA=OB=OC=OD所以点A、B、C、D在以O为圆心的圆上再问:请问我还可以问你别的题吗?好的话都选你再答:当然可以再问:已知在○O中,A,B是线段CD与圆的两个交点,且A
这题只要证明N为AB中点,就可得出那2个结论可以先设MC=a,DC=2a,MD=根号5a我用:√5a来表示令NC与MD交点为P,则CP=2√5a/55分之2倍根号5可求出MP=√5a/5然后ΔMPC相
过点O作OE⊥AB于E,延长EO交CD于F∵四边形ABCD是平行四边形,OE⊥AB∴EF⊥AB,EF⊥CD,AB=CD∴S△AOB=1/2*AB*OE,S△COD=1/2*CD*OF∴S△AOB+S△
解对称理由如下连接AC,∵O是正方形ABCD的对称中心∴OA=OC,AB∥CD∴∠OAH=∠OCM∵∠AOH=∠COM∴△AOH≌△COM(ASA)∴OH=OM∴△AO
3对∵BC∥AD∴弧AB=弧CD则AB=CD,∠BAC=∠CDB,∠ABD=∠DCA梯形ABCD是等腰梯形∠BAD=∠CDA,∠ABC=∠DCB,AC=BD用全等三角形的条件,可以判断△ABD≌△DC
因为正四棱锥的底面是正方形,且四个顶点都在圆周上.任何一个四个定点在圆周上的矩形若为正方形,那么这个正方形的顶点一定在大圆上,也就是说正方形的对角线即为直径.再问:还是不明白,球的任何一个切面上都可以
DEBF为菱形EO垂直于BD,所以EOD=90度,沿DE折叠A落在O处,所以A与O关于DE对称,所以DAB=EOD=90度DO=DA=1/2DBAB/BC=根3/1=根3
http://hi.baidu.com/snm%C4%DD%B6%F9/blog/item/402aaf94dd3e444cd1135efb.html
从点O引垂线至CD,垂足为点N,即交于CD上点N;在三角形OCM和三角形OCN中,因为角COM=角CON=90度,角ACB=角ACD,OC=OC,所以三角形OCM和三角形OCN全等;所以ON=OM=圆
存在即是以O为圆心1/2对角线为半径(即OA)的圆