如图AB,CB是圆O的两条弦,M,N分别是AB,CD的中点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 16:40:48
如图AB,CB是圆O的两条弦,M,N分别是AB,CD的中点
如图,AB是圆O的直径,CA切圆O于A.连结CB交圆O于E,F为AC中点,求证:EF是圆O的切线.

连结AE,EO则:∠BEA=90°,∠BAC=90°证得∠B=∠C=45°所以∠EOA=90°三角形CEA为等腰直角三角形,EF为斜边中线、高四边形OEFA为正方形,EF垂直OE,所以EF是圆的切线

如图,ab是圆o直径,ca切圆o于a,连接cb交圆o于e,f为ac中点

因AB为直径ac为切线所以角bac为直角因af=fc(f为ac中点)ao=bo(两者均为半径)所以fo平行且等于二分之一倍的cb又因为ae垂直于bc所以ae垂直fo于G点所以角aof=角eof(等腰三

如图 ab是圆o的直径,点C是BA延长线上一点,CD切圆O于D点,弦DE平行CB,Q是AB上一动点,CA=1,CD是圆O

当Q从A向B运动的过程中,图中阴影部分的面积不发生变化 连结0D、OE.∵DE‖CB,∴S△QDE=S△ODE(同底等高)∴S阴影=S扇形ODE设圆的半径为r,由切割线定理,CD&s

如图5,AB是圆O的直径,点C是BA延长线上一点,CD切圆O于点D,弦DE平行CB,Q是AB上的一点,CA=1,CD=根

根据题意,连接OD,△ODC为直角三角形,所以,OD^2+CD^2=OC^2因为OD=R,OC=R+1,CD=√3×R所以,R^2+(√3R)^2=(R+1)^2R^2+3R^2=(R+1)^24R^

如图,圆O的直径DF与弦AB交于点E,C为圆O外一点,CB⊥AB,G是直线CD上一点,∠ADG=∠ABD,CD是圆O的切

24.证:连结AF则∠ABD=∠F∠ADG=∠ABD∴∠ADG=∠F,∵DF为⊙O的直径∴∠DAF=90°∴∠ADF+∠F=90°∴∠ADG+∠ADF=∠FDG=90°∴∠DAF=∠CDE=90°∵C

如下图所示,直线AB经过圆O上的点C,并且OA=OB,CA=CB,求证直线AB是圆O的切线

证明:连接OC∵OA=OB,CA=CB,OC=OC∴⊿AOC≌⊿BOC(SSS)∴∠ACO=∠BCO∵∠ACO+∠BCO=180º∴∠ACO=∠BCO=90º即OC⊥AB,根据垂直

如图AB是圆O的直径,BC是圆O的弦,OD垂直CB于点E,交弧BC于点D,连接CD.

拜托啦,很急……今晚就要!详细过程哦!AB是圆O的直径,BC是圆O的弦,OD垂直CB,垂足为E,交弧BC于点D,连接AC,CD,DB设角CDB=α,角ABC=β,试找出α与β之间的一种关系式并给予证明

如图,AB是圆O的直径,CB是铉,OD⊥CB于点E,交圆O于点D,连接AC,AD

2、CE=EB=4,OE=R-ED=R-2OB^2=OE^2+EB^2R^2=(R-2)^2+4^2R=5

如图,直线AB经过⊙O上的点C,AB为⊙O的切线,并且CA=CB,OA=OB.求ab是圆o的切线

证明:连接OC∵OA=OB,AC=CB,OC=OC∴△AOC≌△BOC∴∠ACO=∠BCO∵∠ACO+∠BCO=180°∴∠ACO=90°∵C在⊙O上∴AB是⊙O的切线

如图,圆p和圆o相交于AB两点,点p经过点o,c是圆p的优弧AB上的任意一点,弦OC交公共弦ab于点d,连接CA,CB

本题:圆O与圆P相交于A、B两点,则:OP垂直平分AB(证明方法是:连接OA、OB、PA、PB因为OA=OB,PA=PB、PO公共所以,△PAO≌△PBO(SSS)所以,∠APO=∠BPO而在△PAB

如图,AB是圆O的直径,BC是圆O的切线,切点为B,D是圆O上一点,CD=CB,连接AD.OC.OC交圆O于E,交BD于

(1)三角形OBC全等于三角形ODC(SSS)角CDO=角CBO=90度所CD是圆O的切线(2)由结论(1)知OBCD四点共圆角ABD=角DCO=1/2角BCD所以角BCD=2角ABD(3)OBCD四

如图,已知AB是圆O的直径,AC切圆O于点A,CB交圆O与D,DE切圆O于D,BE⊥DE,垂足为E,BD=10,

韦达定理:关于x的一元二次方程ax²+bx+c=0的两根x1,x2满足x1+x2=-b/a,x1•x2=c/a设x²-2(m+2)x+2m&su

如图,已知AB为圆O的直径,AD切圆O于点A弧EC等于弧CB则下列结论不一定正确的是?

图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的

已知:如图,AB是⊙O的直径,弦AD∥OC.求证:CD=CB.

证明:连接AC、OD.∵AD∥OC(已知),∴∠DAB=∠COB(两直线平行,同位角相等);又∵∠CAB=12∠COB(同弧所对的圆周角是所对的圆心角的一半),∴12∠DAB=∠CAB(等量代换),∵

如图,AB是圆O的直径,CB、CD分别与圆O相切于点B、D,求证AD平行OC

是OP吧?连接OP,OD,∵PD=PB,OB=OD,OP是公共边∴△PDO≌△PBO∴∠POD=∠POB=∠BOD/2∵∠A=∠BOD/2∴∠A=∠POB∴AD‖OP

如图,圆O是三角形ABC的外接圆,CB=BD,AB是角CAD的角平分线,求证点D是圆上一点

反证法假如D不圆上,因为AB是角CAD的角平分线,所以BC不等于BD,与CB=BD相矛盾所以点D是圆上一点

如图,AB是⊙O的弦,C是⊙O外一点,OC交AB于D,若OA⊥OC,CD=CB,CB是⊙O的切线吗?为什么?

CB是⊙O的切线.理由:如图,连接OB,则OA=OB,所以∠A=∠OBA.因为CD=CB,所以∠CDB=∠CBD.因为∠A+∠ODA=90°,∠ODA=∠CDB所以∠OBA+∠CBD=90°,即CB⊥

如图,AB是圆O的直径,弦CD垂直AB于点M,连结CO,CB.

(1)连结AC、易知△ACM与△CBM相似,所以CM^2=AM×BM,代入得CM=4,所以CD=8(2)角COM=角OCB+角B=2角OCD,因此,角COM=60°,角OCD=30°,可知CB=2CM