如图A,B是圆心O上的一点,∠AOB等于120°,C是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:06:50
如图A,B是圆心O上的一点,∠AOB等于120°,C是
如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径做⊙O,分别与∠EPF两边相交于A、B和C、D

(1)作o到AB,CD垂线,通过角边角证全等三角形证两条垂线相等,在园内得AB=CD(2)因为平行所以角OAB=角DPB,同时角OAB=角AOP+角APO,因为角CPO=角APO,得角APO=AOP,

(2013•怀化)如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与A

(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=

(2014•永州三模)如图,已知在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于点E,与

连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A

如图,圆O与圆P相交于A.B两点.圆P经过圆心O,点C是圆P的优弧AB上任意一点,连AB.AC,BC,OC.(1)指出

答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D

如图,AB是⊙O的直径,C是⊙O上一点,过圆心O作OD⊥AC,D为垂足,E是BC上一点,G是DE的中点,OG的延长线交B

(1)结论:OD∥BC,证明:∵AB是⊙O直径,C是⊙O上一点,∴∠ACB=90°.即BC⊥AC.∵OD⊥AC,∴OD∥BC.(2)结论:EF=BE+FC,证明:∵OD⊥AC,∴AD=DC.∵O为AB

如图,CD是半圆的直径,O为圆心,E是半圆上一点,且∠EOD=93°,A是DC延长线上一点,AE与半圆相交于点B,如果A

设∠A=x,∵AB=OC,∴∠BOA=x,∴∠EBO=2x,而OB=OE,∴∠AEO=2x,∴∠EOD=∠A+∠AEO,而∠EOD=93°,∴x+2x=93°,∴x=31°,∴∠EOB=180°-4x

如图,已知Rt△ABC中,∠B=90°,点E是BA延长线上的一点.以边AC上的点O为圆心、OA为半径的圆O与EC相切,D

第二题考虑一下圆,OD=OA,然后就行了,自己算吧,我也正在算第三题我不会写.~~~~(>_

(2013?钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、B

(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD=BDOD=23,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,

(2013•钦州)如图,在Rt△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆与AB边相切于点D,与AC、B

(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD=BDOD=23,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,

如图,已知圆O的直径AB=4,定直线L到圆心的距离为4,且直线L垂直直线AB.点P是圆O上异于A,B的任意一点,直线PA

(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x

(2007•昌平区一模)已知:如图,△ABC中,∠B=90°,O是AB上一点,以点O为圆心,OB为半径的圆切AC于点D.

(1)证明:∵∠B=90°,且OB为⊙O的半径,∴CB切⊙O于点B∵CD切⊙O于点D∴CD=CB(1分)(2)连接OD(如图1),由(1)得:BC=CD=3.在Rt△ABC中,AC=AD+CD=2+3

如图,在平面直角坐标系中,以坐标原点O为圆心的⊙O分别交x轴、y轴于A、C和B、D,点M(4,3)为⊙O上一点

试题分析:由题意可知,∠AEC=∠AOC=45°;当∠ABF=∠AEC=45°时,只有点F与点C或D重合,根据待定系数法可求出直线BF对应的函数表达式.根据圆周角定理得,∠AEC=∠AOC=45°,∵

如图,在△ABC中,∠B=90°,点O是AB上一点,以O为圆心,OB为半径的半圆与AB交于

由题意可知三角形AOD与三角形ACB相似AO/AC=AD/AB=OD/BC=1/3又因为OD=OB=1AD/(1+AO)=1/3AO+1=3AD又因为三角形AOD为直角三角形所以OD2+AD2=AO2

如图,⊙P与⊙O相交于A、B两点,⊙P经过圆心O,点C是⊙P的优弧AB上任意一点(不与点A、B重合),连接AB、AC、B

:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即

如图,在正方形abcd中,o是边cd上一点,以o为圆心...

设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC

如图,AP是圆心O的切线,A为切点,点B在圆心O上,且PA=PB,求证PB是圆心O的切线.

证明:连接OA,OB,OP.      点B在圆心O上,且PA=PB;      

如图,A是半径为2的圆心O外一点,OA=4,AB是圆心O的切线,B为切点,弦BC平行OA,连接AC,求阴影部分的面积.

再问:什么是弓形???是弧形吧???cos又是什么???再答:弓形——弦BC与弧BC围成的图形。它是一个面弧形——弧BC,它是一条线cos——余弦。三角函数的一种,它是初中数学的必修内容什么是π——圆

如图,已知直线AB经过圆O的圆心,且与圆O相交于A,B两点,点C在圆O上且∠AOC=30°点P是直线AB上一个动点

符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60