如图A,B是圆心O上的一点,∠AOB等于120°,C是
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 16:06:50
什么叫角Q啊如果是AQP=y^0那这道题考的就是圆心角与圆周角的关系2y=x
连结OP∴∠OCP=∠OPC=∠DCP∴OP//CD∵CD⊥AB∴OP⊥AB∴∴P是弧AB中点
(1)作o到AB,CD垂线,通过角边角证全等三角形证两条垂线相等,在园内得AB=CD(2)因为平行所以角OAB=角DPB,同时角OAB=角AOP+角APO,因为角CPO=角APO,得角APO=AOP,
(1)连接OD、OE,∵⊙O切BC于E,切AC于D,∠C=90°,∴∠ADO=∠BEO=90°,∠ODC=∠C=∠OEC=90°,∵OE=OD=2,∴四边形CDOE是正方形,∴CE=CD=OD=OE=
连接OD、DE、DB,设⊙O半径为r,∵CD为⊙O切线,∴∠ODA=90°,∵BE为⊙O直径,∴∠BDE=90°,∴∠ADE=∠BDO,∵OB=OD,∴∠OBD=∠ODB,∵∠DAE=∠BAD,∴△A
答案是这样的:(1)指出图中与角ACO相等的一个角;∠ACO=∠BCO(2)当点C在圆P什么位置时,直线CA与圆O相切?说明理由.当点在圆O上点D位置时,直线CA与圆O相切连接OP并延长,交圆O于点D
(1)结论:OD∥BC,证明:∵AB是⊙O直径,C是⊙O上一点,∴∠ACB=90°.即BC⊥AC.∵OD⊥AC,∴OD∥BC.(2)结论:EF=BE+FC,证明:∵OD⊥AC,∴AD=DC.∵O为AB
设∠A=x,∵AB=OC,∴∠BOA=x,∴∠EBO=2x,而OB=OE,∴∠AEO=2x,∴∠EOD=∠A+∠AEO,而∠EOD=93°,∴x+2x=93°,∴x=31°,∴∠EOB=180°-4x
第二题考虑一下圆,OD=OA,然后就行了,自己算吧,我也正在算第三题我不会写.~~~~(>_
(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD=BDOD=23,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,
(1)∵AB与圆O相切,∴OD⊥AB,在Rt△BDO中,BD=2,tan∠BOD=BDOD=23,∴OD=3;(2)连接OE,∵AE=OD=3,AE∥OD,∴四边形AEOD为平行四边形,∴AD∥EO,
(Ⅰ)建立如图所示的直角坐标系,由于⊙O的方程为x2+y2=4,…(2分)直线L的方程为x=4,∵∠PAB=30°,∴点P的坐标为(1,√3),∴lAP:y=√3/3(x+2),lBP:y=-√3(x
(1)证明:∵∠B=90°,且OB为⊙O的半径,∴CB切⊙O于点B∵CD切⊙O于点D∴CD=CB(1分)(2)连接OD(如图1),由(1)得:BC=CD=3.在Rt△ABC中,AC=AD+CD=2+3
试题分析:由题意可知,∠AEC=∠AOC=45°;当∠ABF=∠AEC=45°时,只有点F与点C或D重合,根据待定系数法可求出直线BF对应的函数表达式.根据圆周角定理得,∠AEC=∠AOC=45°,∵
由题意可知三角形AOD与三角形ACB相似AO/AC=AD/AB=OD/BC=1/3又因为OD=OB=1AD/(1+AO)=1/3AO+1=3AD又因为三角形AOD为直角三角形所以OD2+AD2=AO2
:(1)∵OA^=OB^,∴∠ACO=∠BCO;(2)连接OP,AO,并延长与⊙P交于点D若点C在点D位置时,直线CA与⊙O相切理由:连接AD,OA,则∠DAO=90°∴OA⊥DA∴DA与与⊙O相切即
设正方形的边长为1,OD=x则有OC=1-x,OB=1+x三角形OBC中,由勾股定理有 OB^2=OC^2+BC^2所以 (1+x)^2=(1-x)^2+1^2得x=1/4所以OC
证明:连接OA,OB,OP. 点B在圆心O上,且PA=PB;  
再问:什么是弓形???是弧形吧???cos又是什么???再答:弓形——弦BC与弧BC围成的图形。它是一个面弧形——弧BC,它是一条线cos——余弦。三角函数的一种,它是初中数学的必修内容什么是π——圆
符合条件的点P共有三个.(1)当点P在BA延长线上P1点时:若OQ=P1Q,则∠QOP1=∠QP1O,设∠COQ=X,则∠QP1O=X+30.∠OCQ=X+60=∠OQC. 则:2(X+60