如图:已知△ABC与△DEF是一副三角板的拼图,(1)求证EF平行于BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 15:55:53
(1)∵EF⊥AD,BC⊥AD,∴BC∥EF(同一平面内,垂直于同一条直线的两直线平行).(2)∵∠APE=180°-∠AEP-∠A=180°-90°-45°=45°,又∵∠APE=∠OPF,∴∠1=
证明:∵AF=DC,∴AF-CF=DC-CF,即AC=DF;在△ABC和△DEF中AC=DFAB=DEBC=EF∴△ABC≌△DEF(SSS).
证明:∵在△ABC和△DEF中,AB=DE,AC=DF,∠A=∠D(已知)∴△ABC≌△DEF(三角形全等定理.边角边)
证明:∵AF=DC,∴AF-CF=DC-CF,∴AC=DF,在△ABC与△DEF中AB=DEAC=DFBC=EF,∴△ABC≌△DEF(SSS).
∵△ABC为等边三角形,且AD=BE=CF∴AF=BD=CE,又∵∠A=∠B=∠C=60°,∴△ADF≌△BED≌△CFE(SAS),∴DF=ED=EF,∴△DEF是一个等边三角形.再问:可以再具体些
AB=DE,∠ACB=∠DFE,∠A=∠D.①若添加条件是AB=DE,利用SAS可证两个三角形全等;②若添加条件是∠ACB=∠DFE,利用ASA可证两个三角形全等;③若添加条件是∠A=∠D,利用AAS
如图所示:△DEF即为所求.再问:???
相似.证明:∵△ABC∽△DEF,∴ABDE=BCEF=BMEN,∠B=∠E,∴△ABM∽△DEN.
(1)请你一其中三个条件作为命题的已知条件,以“△ABC≌△DEF作为命题的结论,将一个真命题写在括号里,并证明真命题(1、2、3)证明:因为AB=DE,因为边--角--边相等,所以两个三角形全等.∠
如图所示:根据轴对称的性质画出图形即可.
△DEF和△ABC相似,且相似比是1/2所以:其面积比是1/4,所以:S△ABC=4S△DEF=4*4=16(平方厘米)
证法一:这里用了两个明显的结论①当三角形两边不变时,第三边增大时,第三边对的角也增大.②当三角形两边不变时,第三边对的角增大时,其余两角都变小证明:由对称轮换性不妨设A》B》C那么BC》AC》AB∵A
∵ΔABC≌ΔDEF,∴对应边:AB与DE,AC与DF,BC与EF,对应角:∠A=∠D,∠B与∠DEF,∠ACB与∠F.
3:2百分之百的除了面积比是6::4其他的比全是3:2因为△ABC∽△DEF△ABC与△DEF的相似比是3:2且BG:GC=EH:HF而GC=BC-GCHF=EF-HE所以GC:HF=3:2因为AC:
AD、BE、CF是等边三角形ABC的角平分线,又由等边三角形四线合一(中线,角平分线,中垂线,高线),所以D,E,F为中点,那么DE,DF,EF为中位线,又因为AB=AC=BC所以DE=DF=EF.即
AB和DEBE和CFBC和EFAC和DF再答:望采纳
∵△ABC∽△DEF∴(a+b)/c=(b+c)/a=(a+c)/b=k∴a+b=ck,b+c=ak,a+c=bk相加得a+b+b+c+a+c=ck+ak+bk即2(a+b+c)-(a+b+c)k=0
(1)若以∠ACB=∠DFE得出△ABC≡△DEF,依据是AAS角、角、边(2)若以BC=EF得出△ABC≡△DEF,依据是SAS边角边(3)若以∠A=∠D得出△ABC≡△DEF,依据是ASA角边角(
∵AB、BE、CF是等边△ABC的角平分线.∴AD⊥BC,BE⊥AC,CF⊥AB,D、E、F是等边三角形三边的中点,∴EF∥BC,DE∥AB,DF∥AC,∴△AEF、△BDF、△DEC是等边三角形,∴