如图9,正方形abcd中,点e,f分别在bc,cd上,ae=af
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 20:08:59
1:延长EF交正方形外交平分线CP于点P,是判断AE与EP的大小关系,并说明理由\x0d2:在AB边上是否存在有一点M,使得四边形DMEP是平行四边形,若存在,请证明,若不存在,请说明理由各位速度
(1)两个正方形重叠部分的面积保持不变;(2)重叠部分面积不变,总是等于正方形面积的14,即14×1×1=14,连接BE,CE,∵四边形ABCD和四边形EFGH都是正方形,∴EB=EC,∠EBM=∠E
很高兴为您解答!分析:(1)在AB上取BH=BE,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECP,从而得到AE=EP;(2)先证△DAM≌△ABE,进而可得四边形DMEP是平行四边形
连接BD因为DF=DC,DG⊥CF,所以由勾股定理FG=GC,因此三角形DFG与DCG全等所以<FDG=<CDG=<CDF/2=(<CDA+<ADF)/2=(90+<
(1)AE=EP.证明:设AB=X,BE=Y,则EC=X-Y.作PG垂直BC的延长线于G,易知PG=CG,设∠BAE+∠AEB=90°=∠AEB+∠PEC,则:∠BAE=∠PEC;又∠B=∠PGE=9
EH^2=(1/3AB)^2+(2/3AB)^2=5/9AB^2EH^2/AB^2=5/9小正方形与大正方形的面积之比为5/9
好评给我把再答:再问:答案拿来再答:发了再问:采纳了
(1)∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵AE=AF,∴Rt△ABE≌Rt△ADF,∴BE=DF(2)四边形AEMF是菱形.∵四边形ABCD是正方形,∴∠BCA=∠DCA=4
不清楚追问,清楚了希采纳再问:看不懂求过程再答:∵ABCD是正方形∴AC垂直平分BD∴当点P在AC上时,都有BP=DP∵当点B,P,E不在同一直线时,BP+PE>BE,当B,P,E在同一直线时,BP+
求图!如果ABCD是顺时针排列的话(逆时针也一样),延长BC后,连接AE,AC!由于ABCD是正方形,所以角ACD=45度!角DCE=90度!AC=CE,所以角CAE=角CEA,且角CAE+角CEA+
(1)1.在△BEP,△CQP中∠B=∠C,BE=CP=6,BP=CQ=4△BEP≌△CQP2.若要△BEP≌△CQP除1之外的情况,则只有BE=CQ=6,BP=CP=5才成立设Q的运动速度为x,则C
因为是正方形所以∠DCA=∠BCA=45°,BC=DC在三角形DCE和三角形BCE中,CE是公共边所以ΔDCE≌ΔBCE(SAS)所以BE=DE
设AB=4.则BE=√20,EF=√5,BF=5.BE²+EF²=BF²∴∠BEF=90º.BE⊥EF.无量寿佛,佛说苦海无涯回头是岸!施主,我看你骨骼清奇,器
延长AB,过F作FG⊥AB延长线于G∵正方形ABCD,AB=√2∴AD=BC=CD=AB=√2∴AC=√2×√2=2∵菱形AEFC∴AF=AC=2,BF∥AC∴∠FBG=∠CAB=45∵FG⊥AB∴B
设AF与BE相交于M,DA=DC,∠ADF=∠CDF=45°,FD=FD==>△DAF≌△DCF==>∠DAF=∠DCFAE=ED,∠BAE=∠CDE=90°,AB=DC==>△ABE≌△DCE==>
设BE、AF交于O在△AFD和△BFD中,DF=DF,AD=CD(正方形),∠ADF=∠CDF(正方形对角线平分角),∴△AFD和△BFD全等,则∠DAF=∠DCF在△AEB和△DEC中,AE=DE(
igxiong008是对的~
ABCD为正方形,所以角B=90°,角DBC=45°.又因为EF⊥CE,所以A,B,C,D四点共圆,所以角EFC=角DBC=45°,所以△CEF为等边直角三角形,EF=EC/根号2而FC=根号(BC&
(1)∵ABCD是正方形∴∠B=∠D=90°AB=AD又∵AF=AE∴△ABE全等于△ADF∴BE=DF(2)∵AC是ABCD的对角线∴∠DCA=∠BCA∵BE=DF∴FC=EC又∵DC=DC∴△DC