如图8所示,竖直平面内的4分之3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:04:29
因为当小球到达a点时,电场力做正功,且为最大值,所以小球机械能增大最大.电势能全部转化为动能和重力势能.
(1)m*g*14/3=v^2/r*m压力则v^2=11*g*r/3m*g*H=mv^2/2动能守恒(H为实际下降高度,H=h-R/2;R为小圆弧半径r=R/2)则v^2=2*g*H2*g*H=14*
若能通过D点,则小球所需向心力必须大于等于小球自身重力,即F>=G.又F=mv^2/r,所以mv^2/r>=mg,即v^2>=gr.经过D点后,小球作平抛运动,当小球落到CAE平面时,竖直方向有:r=
1.动能定理mgh=1/2mv^2v=根号(2gh)2.设BO的距离为H,B→C所需的时间为t,第二次传送带末端的速度为v'第一次和第二次B→C的过程,因为H=1/2gt^2,所以经过的时间是相同的.
P静止,就要求上极板为正,且稳定.则要求N端产生的感应磁场要向上N端要产生的向上的感应磁场,可以是N端向上的磁场在减小,或向下的磁场在增大.则M端向上的磁场在增大,或向下的磁场在减小.要使M产生向上的
(1)当木板水平放置时,物块的加速度为a0,此时滑动摩擦力:f=μN=μmg=0.2×1×10=2(N) 解得:a0=F−fm=8−21=6(m/s2)(2)当摩擦力沿斜面向下且加速度为零时
好好看(乙)图,10π~15π(s)内B1方向和0~5π(s)相反,也就是说10π~15π(s)内B1的方向向外,此时电流方向向左,磁场方向向外,所受安培力向上.
匀减速运动过程中,有:vA^2-vo^2=-2as①恰好作圆周运动时物体在最高点B满足:mg=m*vB0^2/R*B0=2m/s②假设物体能到达圆环的最高点B,由机械能守恒:1/2mvA^2=2mgR
首先我们知道OA的角度不变,是一个定值,我们假设oa与水平线夹角为角1,ob与水平线夹角为角2,然后假设ob逆时针转动,我们列出方程式:Foa*sin∠1+Fob*sin∠2=GFoa*cos∠1=F
1.最低点速度为0,加速度是向上的,所以F>G2.动能全转化为摩擦力做的功,自然是10*5=50啦3.A平抛不是直线.B斜抛也不是直线吧.C是匀加速的定义啦.
(1)(G-F安)/m=a,a=g-B^2L^2v/Rm=5m/s^2P=E^2/R=(BLV)^2/R=0.01*0.01*4/0.2=0.002W(2)G=F安mg=B^2L^2*vv(最大)=m
(1)(2)(3)△=0.38J或0.384J(1)A由光滑圆弧轨道滑下,机械能守恒,设小物块A滑到圆弧轨道下端时速度为v1,则……2分 &n
如图24-23(a)所示,装有部分水的试管竖直漂浮在容器内的水面上,试管内水面与容器底部的距离为h,试管壁的厚度不计,粗细均匀.现将某物块放入试管,物块漂浮在试管内的水面上,试管仍漂浮在容器内的水面上
静止时:mg=BIL=BEL/R扫过面积最大时,匀速运动:mg=BIL=B2L2V/R其中单位时间内扫过的面积:S=LV所以mg=BIL=B2LS/R从静止时的式子中解出L/R带入得S=E/B=3
解:设A球在圆环上的速度为V,因为恰好能到达顶端,所以有:mV2/R=mg,所以此时A球动能是:1/2mV2=1/2mgR.再根据动能定理:A球在环底的动能是:1/2mgR+2mgR=5/2mgR设B
就选C,杆不像绳子,只有拉力,杆可以给任意方向施加力,要谨记再问:方向怎么判断再答:要结合物体的运动状态判断,不好判断,这个题目中,b受到重力,要从静止向上旋转,则刚开始它们的合力沿切线方向,以后自己
算多了,还把速度给算出来了纸上面的坐标第一个数字少乘一个R
(1)设AB初始角速度至少为ω0.临界条件:小球B能达到最高点.根据能量守恒定律,有3/2mω²r²=2mgr解得ω=√¾g/r(2)A对盘的作用力与B的抵消.设此时两球
A、小球在最低点时.重力与拉力的合力提供向心力,所以小球受到的拉力一定大于重力,小球处于超重状态.故A错误;B、设小球在最高点的速度为v1,最低点的速度为v2;由动能定理得:mg(2l)=12&nbs
解题思路:首先对各力做功情况作出分析,而后根据动能定理分析出:当合力所做正功最大时,珠子获得的动能最大。解题过程:解析:珠子在运动过程中,受重力、电场力和圆环的弹力作用,其中重力、电场力做功,圆环弹力