如图6-3-23,在菱形ABCD中,AB=4cm,角ADC=120

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 08:04:35
如图6-3-23,在菱形ABCD中,AB=4cm,角ADC=120
如图,在底面是菱形的四棱锥S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=2SA,点P在SD上,且SD=3

证明:(1)证明:因为底面ABCD是菱形,∠ABC=60°,所以AB=AC=AD=a在△SAB中,由SA2+AB2=2a2=SB2,知SA⊥AB,同理SA⊥AD.所以SA⊥平面ABCD.…(6分)(2

如图,在四边形ABCD中,AE,BF分别平分∠BAD,∠ABC,求证:四边形ABEF是菱形.

证明:∵AE平分∠BAD,BF平分∠ABC∴∠DAE=∠BAE,∠ABF=∠CBF∵平行四边形ABCD∴AD∥BC∴∠BEA=∠DAE,∠AFB=∠CBF∴∠BAE=∠BEA,∠AFB=∠ABF∴BE

如图,过菱形ABCD的顶点C,在菱形外作直线EF,与AB,AD边的延长线交于E,F,已知BE=2,DF=1,求菱形ABC

设变长a因为BC∥AF所以BC/AF=BE/AEa/a+1=2/2+aa=根号2

如图,已知在菱形ABCD中.详见补充,

因为菱形ABCD所以AC,BD互相垂直平分且平分一组对角又ON⊥AD,OM⊥BC,OE⊥AB,OF⊥DC所以ON=OM=OE=OF(角平分线性质定理)

如图,已知菱形ABCD的面积为18根号3,角ABC=60,则菱形的周长

24再问:过程?再答:设棱形变长为x因为角ABC=60度得到公式(x[(x²-(x/2)²)]½)/2=(18*(3)½)/2解得x=6左边是棱形一半的三角形的

如图,菱形abcd的周长为40cm,对角线ac长10cm,求:1bd的长度 2)∠bad和∠abc的读数 3)菱形abc

菱形每边长=40÷4=10(cm)设菱形两条对角线相交于o1)bo²=ab²-ao²=10²-(10÷2)²=75bo=5√3bd=bo×2=10√3

23.(10分)如图,菱形ABCD中,AB=1,∠ABC=60º,等边△AEF的顶点E,F分别在菱形的边DC、CB上.(

解题思路:请填写破解该题的切入点、思路脉络及注意事项(20字以上),学生将对此进行打分(1)首先分别连接OE、0F,由四边形ABCD是菱形,即可得AC⊥BD,BD平分∠ADC.AO=DC=BC,又由E

如图,在三角形abc中,ab=ac,点d.e.f分别是三角形abc三边的中点,求证四边形adef是菱形

等腰三角形,利用中位线原理可得ef=1/2*AB=adde=1/2*AC=afab=ac得到af=dead=ef所以为菱形

已知,如图,在菱形ABCD中,∠BAD=2∠B.求证:△ABC是等边三角形

证明:∵四边形ABCD是菱形∴AD//BC(菱形对边平行)∴∠B+∠BAD=180°∵∠BAD=2∠B∴3∠B=180°∠B=60°∵AB=BC(菱形邻边相等)∴△ABC是等边三角形(有一个角是60°

已知如图,在菱形ABCD中,∠BAD=2∠B求证三角形ABC是等边三角形

人在听么?再问:什么再答: 再答:懂不懂。?再问:第四行写的是什么再答:角BAF等于二倍的角B

已知:如图,在菱形ABCD中,角BAD=2角B.求证:△ABC是等边三角形.

在菱形ABCD中AB=BC,AD∥BC∴∠BAD+∠B=180°∵∠BAD=2∠B∴∠B=180°÷(1+2)=60°∴△ABC是等边三角形

如图,在菱形ABCD中,BD=6,AC=8,求菱形ABCD的周长.

根据菱形的性质AC与BD垂直且互相平分所以OC=(1/2)ACOD=(1/2)BDAC=8BD=6则OC=4OD=3BD与AC垂直,所以,COD值一个直角三角形根据勾股定理OD方+OC方=CD方所以C

(2004•黄埔区一模)如图,在直四棱柱ABCD-A1B1C1D1中,底面是面积为23的菱形,∠ABC=60°,E、F

证明:(Ⅰ) BD⊥ACBD⊥CC1⇒BD⊥平面ACC1A     ①设AC∩BD=O,AE的中点为M,连OM,则OM=12EC=FB∴

如图,在菱形ABCD中.

AD//BE,所以△AMD∽△EMB,从而BM/DM=BE/DA;而∠BAF=∠DAE,有公共角∠EAF,所以∠BAE=∠DAF,又∠ABE=∠ADF,AB=AD,所以△ABE≌△ADF,所以BE=D

如图,在菱形abcd中,角bad等于2倍的角b求证三角形abc是等边3角形

再答:老师刚刚校对的,采纳吧,完全正确再问:第三题给我发可以吗再问:下面的第三题再问:再答:这我得自己做再问:急求啊啊啊谢谢你再答:你等等再答:再答:保证对再答:能采纳吗,同是天涯沦落人相逢何必曾相识

如图,在菱形ABCD中,BD=6,AC=8,求菱形ABCD的周长与面积.

答:菱形ABCD中,对角线AC和BD相互垂直平分因为:BD=6,AC=8所以:BO=DO=BD/2=3所以:菱形面积=三角形ADC面积+三角形ABC面积=AC×DO÷2+AC×BO÷2=AC×(DO+