如图6 在三角形abc中点d是边bc的中点,DE垂直AC,DF垂直AB
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 08:20:42
∵AB=AC ∴△ABC为等腰三角形 ∴∠B=∠C ∵D为BC中点 ∴BD=CD ∵AB=AC∠B=∠C BD=CD ∴△ABD全等于△ACD(SAS) 2. 
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
延长ED,使DG=DE,连接CG、FG,∵DF⊥EG,∴EF=FG∵ΔDEB≌ΔGCD(边,角,边)∴BE=CG∵CF+DG>FG(Δ两边之和大于第三边)又∵GF=BE,FG=EF∴BE+CF>EF
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
过C做AB的平行线与ED的延长线交与M连接FMBD=CD∠B=∠DCM∠BDE=∠CDMA△BDE≌△CDMBE=CM、ED=DMDE⊥DF∠EDF=∠FDM=90°FD=DF△EDF≌△FDMEF=
1、(1)AB=AE+CE延长ED与AB交与E’可证AE'D≌AED,E'DB≌CED有此得AB=AE+CE(2)CE=7/4延长AD至F.使得AD=DF所以ABD≌CDF所以AB=CF角B=角DCF
据分析可知:12S△ABC-14S△ABC=5, &nbs
(1)连接CD,因为等腰RT△ABC,D是斜边AB中点,所以CD=AD=BD=1/2ABCD⊥AB所以∠A=∠ACD=45°又因为AE=CF所以△ADE≌△CDF(SAS)所以DE=DF(2)因为△A
三角形BDE和三角形CFE面积相等我就不解释了.三角形BDE和三角形ADE也是相等的,因为两三角形底相等,AD=BD,且高也相等,都是过E做AB的垂线就是高,根据面积公式就知道底高都相等面积一定相等了
∵D为BC中点,∴SΔABC=2SΔABD,∵E为AD中点,∴SΔABD=2SΔABE,∴SΔABC=4SΔABE=4.
是求S△DEF吗?如下:S△AEF:S△ABC=1/4(△AEF的高和底分别是△ABC的高和底的1/2),同理S△BDE:S△ABC=1/4,S△CFD:S△ABC=1/4,所以S△DEF=(1-1/
图呢再问:再答:似乎DBC=BCE没用啊。你只需连接BE,然后在由圆的定理就做出来了。再问:什么是圆的定理再答:再答:P点无论在圆上哪里。APB都是直角。且PO=AB/2再问:再问:这个怎么写再答:啊
用相似比来做,因为D\E是中点,所以DE是中位线,所以DE比BC就是1:2所以三角形ADE面积比三角形ABC面积就是相似比的平方1:4所以ADE面积是2
请问阴影在哪里?请问E在哪里?
如图∵d,e,f分别是三角形abc各边的中点∴de,ef,df分别为三角形的三条中位线∴df‖bc,de‖ac,ef‖ab∴df=be=ce,de=af=cf,ef=ad=bd∴△ade≌△bdf≌△
解题思路:梯形解题过程:在△ABC中,D,E,F是三角形ABC各边的中点,AG垂直于BC.垂足为G.求证:四边形DEFG是等腰梯形证明:∵AG⊥BC,F为AC的中点∴FG=1/2AC(直角三角形中斜边
证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC
AO=AD+DO=1/2a+1/3(DA+AC)=1/2a+1/3(-1/2a+b)=1/3a+1/3bAE=AB+BE=a+1/2(BA+AC)=a+1/2(-a+b)=1/2a+1/2b所以AE=
36,ABF的面积是ABC的一半48,AEF的面积是ABC的的3/4,所以AEF的面积是=48*3/4,也就是36啦,